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Abstract 

Recent advances in Statistical Learning techniques have enabled the development of 
new algorithms for monitoring, data cleansing, data compression, structural identification, 
damage identification, and structural dynamics in general. 

This keynote presents novel sparse and low-rank methods to address the inverse 
problems in structural dynamics, identification, and data-driven health monitoring. In 
particular, the emerging mathematical tools such as sparse representation (SR) and 
compressed sensing (CS), as well as the unsupervised multivariate blind source separation 
(BSS), are used to harness the structural dynamic features and damage information intrinsic 
within the structural vibration response measurement data, which is found to have sparse 
and low-rank structure.  Data-driven approaches are developed towards rapid, 
unsupervised, and effective system identification, damage detection, as well as massive 
SHM data management.   

1. Introduction  

During service, civil structures are subjected to operational loads and environmental 
effects, as well as various natural disasters (e.g., earthquakes and hurricanes) and man-
made extreme events (e.g., blasts and impacts). Assessing health status and detecting 
damage of the structure as early as possible is essential to ensure structural integrity. To 
achieve this goal, structural health monitoring (SHM) systems with an array of networked 
sensors have been developed to continuously measure structural data for monitoring and 
assessing structural performance.  

 
Vibration-based measurements (e.g., strains, displacements, and accelerations) and 

techniques such as modal analysis based system identification and damage detection 
methods have been widely studied for SHM (Doebling et al. 1996). Traditional modal 
identification typically complies with the principle of system identification which is based on 
the relationship of inputs and outputs (Ewins 2000). This corresponds to an ideal situation 
where excitation to the system can be controlled or measured. For civil structures, typically 
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large-scale (e.g., bridges, buildings, dams, etc.), it is extremely difficult or expensive, if not 
impossible, to apply controlled excitation to conduct input-output modal analysis. Accurate 
measurement of the ambient excitation (e.g., wind, traffic, etc) to structures is also 
challenging. Therefore in practical applications, it is often required to identify the structural 
dynamic properties and health status from only the available structural vibration response 
measurement data. This is essentially an ill-posed inverse problem, which hardly has 
analytical solutions. However, with some additional information and appropriate 
assumptions, one could hope to find solutions that may be sufficient in structural dynamics 
and health monitoring. 

 
In this context, this paper provides novel sparse and low-rank methods to address 

the inverse problems of interest where only the structural vibration responses are available. 
Particularly, the emerging mathematical tools such as sparse representation (SR) 
(Bruckstein et al. 2008), compressed sensing (CS) (Candes and Wakin 2008), as well as 
the unsupervised blind source separation (BSS) (Hyvarinen et al. 2001), are used to model 
and extract the salient structural features and damage information, which are found to have 
sparse and low-rank structure. The paper describes the recent work by the author and his 
coworkers on this exciting topic. 

2. Definition of sparsity and low-rank 

2.1. Sparse representation 

Sparsity of a signal  can be defined by the -norm (Bruckstein et al. 2008), 

  (1) 

 

simply counting the number of non-zeros in . A signal  (vector) is -sparse if it has at 

most  non-zeros, i.e., . In analogy, a matrix  is also said to be sparse if most of 

its elements are zero.  is also said to be -sparse (transform sparse) in a domain  with a 

representation  

  (2) 

 

if .  is an orthonormal basis (e.g., sinusoid, wavelet, etc), 

whose th row is  (or on Fourier basis).  is the coefficient sequence of 

  on , whose  th element  (inner product). This generalization is 

particularly useful, since, in practice,  is typically sparse in an appropriate domain instead 

of its original domain. 
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2.2. Low-rank structure 

Structural responses, from potentially hundreds of channels or sensors, can be 
represented as a data matrix. The multi-channel data matrix is also explicitly exploited and 
modeled, e.g., by singular value decomposition (SVD) or principal component analysis (PCA) 

(Jolliffe 1986). The data matrix  with  sensors and  time history sampling points 

( ) has an SVD representation 

  (3) 

 
where   is an orthonormal matrix associated with the channel (variable) 

dimension, called left-singular vectors or principal component directions;  has  

diagonal elements  as the  th singular value ( ), and 

 is associated with the time history (measurement) dimension, called 

the right-singular vector matrix.  is said to be low-rank if it has only few active (non-zero) 

singular values ( ). 

 
It is well understood that the th singular value  is related to the energy captured by 

the th principal direction of . In structural dynamics, under some assumption, the principal 

directions would coincide with the mode directions (Feeny and Kappagantu 1998) with the 
corresponding singular values indicating their participating energy in the structural responses 

, i.e., the structural active modes are captured by  principal components under broadband 

excitation. 
 
An empirical, but frequently sound, observation is that there are typically only few 

active modes in the structural vibration responses (Yang and Nagarajaiah 2014a); in other 
words, few of its singular values are active:  is typically quite small. If the sensor or channel 

number is reasonably large, then  and  is said to be low-rank. 

However, this is seldom so for large civil structures, because the sensor number  is not so 

much more than (often times even less than) the involved  modes; as a result,  can't 

be guaranteed for a low-rank representation. 
 

A simple yet effective strategy—rank-invariant matrix reshape (Yang and Nagarajaiah 
2014b) has been proposed to guarantee a low-rank representation of structural response 

data matrix, regardless of the original dimension of . Essentially, mode information 

(few are active; hence, the rank of the structural response data matrix is small) remains 
approximately invariant (small) regardless of the reshape of the structural response data 
matrix. 

2.3. Blind source separation (BSS) 

BSS as a promising unsupervised multivariate machine learning technique is able to 
recover the hidden source signals and their characteristic factors using only the measured 
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mixture signals, with high potential in unsupervised learning of the patterns and features 
hidden in the large-scale multi-channel SHM data set. The linear instantaneous BSS model 
(Hyvarinen et al. 2001) is expressed as 

  (4) 

 

where  is the observed mixture vector with mixture signals, and 

 is the latten source vector with  sources;  is the unknown 

constant mixing matrix consisting of  columns with its  th column  associated with 

. 

 
With only   known, Eq. (4) may not be mathematically solved. To alleviate the 

problem, most BSS techniques, such as independent component analysis (ICA) (Hyvarinen et 
al. 2001), second order blind identification (SOBI) (Belouchrani et al. 1997), and complexity 
pursuit (CP) (Stone 2001), exert a general assumption that the source signals  are 

statistically independent (or as independent as possible) at each time instant , and recover 

the components  that are as mutually independent as possible 

  (5) 

 

such that  and . In particular, ICA biases to recover sparse components 

that are of interest. In Yang and Nagarajaiah (2014c), it is shown that ICA has the ability of 
extracting sparse component, which is the target structural dynamic and damage features of 
interest.  

3. Sparse/low-rank methods for structural dynamics and SHM 

3.1. Sparse  clustering of modal expansion 

For an -DOF linear time-invariant system, its equation of motion (EOM) is 

  (6) 

 
where , , and  are constant mass, diagonalizable damping, and stiffness matrices, 

respectively, and are real-valued and symmetric;  is the system 

response (displacement) vector and  is the external force vector. Under broadband 

excitation, the coupled  may be expressed as linear combinations of the decoupled modal 

responses 

  (7) 
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3.1.2. Sparse clustering of modes 

A new method, sparse component analysis (SCA) (Gribonval and Lesage 2006), takes 
advantage of the spectral sparsity and spatially disjoint of the modal responses (Gribonval 
and Lesage 2006). Transform Eq. (7) into the frequency domain , 

  (8) 

 
Due to the spatially disjoint sparsity of  ( ) which is active only at  (the modal 

frequency of the th mode); elsewhere , . Therefore, Eq. (8) becomes 

  (9) 

 
which means that there is only a scale difference, , between  and  (Yang and 

Nagarajaiah 2013). For the whole , the scatter plot of  (up to 3-dimension) then 

reveals all the  directions of the mode shape columns of  (Fig. 1). In general, the estimated 

vibration mode matrix  can automatically be extracted by standard clustering algorithms 

such as fuzzy-C-means (FCM). 
 
In determined case ( ), time-domain modal responses are readily de-coupled by 

  (10) 

 
thereby estimating the modal frequency and damping ratio from . For underdetermined 

case ( ) where the sensors are insufficient,  is rectangular and recovery of  from 

the underdetermined Eq. (8) is ill-posed. In Yang and Nagarajaiah (2013a), a sparse recovery 
technique with -minimization is explored to solve the underdetermined output-only modal 

identification problem. 
 

To identify highly-damped structures, it is proposed to transform the Eq. (7) to the 
sparse time-frequency domain using short-time-Fourier-transform (STFT) (Yang and 
Nagarajaiah 2013b). Furthermore, using a complex-ICA algorithm, STFT-cICA is able to 
identify structures with complex modes (Nagarajaiah and Yang 2015). Recently, a new BSS 
based output-only modal identification method, complexity pursuit (CP) which explicitly 
exploits the data structure of structural responses and modal responses, is found suitable for 
output-only modal identification of structures with closely-spaced modes, complex highly-
damped modes, and in real-time identification of the time-varying cable tension time history; 
the details are referred to Yang and Nagarajaiah (2013c) and (Yang et al. 2015). Our recent 
work also shows that output-only modal identification can be performed in a non-uniform low-
rate random sampling paradigm based on BSS and compressed sensing (Yang and 
Nagarajaiah 2015a). 
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3.4. Data management via low-rank structure 

3.4.1. Low-rank structure and ICA multivariate sparse representations for data compression 

A relevant observation is that structural vibration responses are typically low-rank by 

SVD or PCA, i.e.,  with small , since in real world, only a few modes are excited 

out and present in the structural vibration responses. Therefore, one strategy for data 
compression is to drop those principal components with significantly small eigen values. As 
small eigen value indicates small energy of the corresponding principal component, it would 
cause little data loss by retaining those dominant components with larger Eigen values. 
Meanwhile, it achieves higher compression by only encoding the retained components. In 
Yang and Nagarajaiah (2014b), it is derived that ICA naturally yields the optimal (linear) 
transformation adaptive to data itself for compression in statistical framework. The real-world 
examples are presented in Yang and Nagarajaiah (2014b). 

             
Fig. 1. The scatter plot of the frequency-domain system responses in determined case with 

three sensors (left) and underdetermined case with two sensors (right). 

3.4.2. Significant data compression 

Dimension reduction for data compression is most effective when  (  

needs to be as low-rank as possible), i.e., the channel (sensor) number needs to be much 
larger than that of the involved modes. However, it is not satisfied in many situations: for civil 
engineering structures, typically large-scale, the sensor number  is not so much more than 

the involved  modes; as a result,  can’t be guaranteed for a low-rank representation. A 

scheme of matrix reshape is proposed to remove this limitation for wider applicability of PCA 
in multi-channel data compression, as detailed in Yang and Nagarajaiah (2015b), and Fig. 2.  
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3.4.3. Removing sparse outliers 

 
Fig.  2. The data compression scheme with the matrix reshape strategy. 

 
Real-world measured structural response data typically contains considerable noise or 

errors. Applications of traditional data processing methods can only deal with dense small 
noise. Robust PCA (Candes et al. 2009), termed PCP, is capable of effectively modeling the 
noisy data with outliers and thus simultaneously removing both the outliers and dense noise 

(Yang and Nagarajaiah 2014b). When the original data  are addictively corrupted 

by both gross errors (outliers) and dense noise, 

  (11) 
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where  has few (sparse) but gross outlier elements with arbitrarily large and 

located magnitudes, and  is entry-wise i.i.d. small dense noise. PCP aims to 

recover  by solving the following convex program nuclear-norm-minimization. In Candes et 

al. (2009), it is shown that real-world structural vibration responses with the gross outliers can 
be effectively removed and more examples are presented in Yang and Nagarajaiah (2014b). 
 
3.5. Damage detection by sparse signal discovery 
 
3.5.1. ICA for recovery of sparse damage information 

The derivation that ICA biases to recover sparse components, which is shown in 
Section 2.3, can immediately lead to a straightforward application in unsupervised damage 
identification. Consider transforming structural responses  carrying the damage 

information into some wavelet scale  to expose the common spike-like feature (viewed as a 

latent sparse component ) hidden within  and incorporate it into the BSS model, 

  (12) 

 
then ICA would blindly recover  (the “interesting” source) with outstanding spike 

features, directly indicating the damage instant(s). Furthermore, the simultaneously-recovered 
 conveying the spatial signature of  also locates damage location(s). Successful 

examples are shown in Yang and Nagarajaiah (2014c). 
 
3.5.2. Dynamic imaging for structural surveillance using low-rank plus sparse representation 

An unsupervised data-driven framework has been established to automate real-time 
detection of structural damage by exploiting the fundamental spatiotemporal data structure of 
the multiple images (video stream) Yang and Nagarajaiah (2015c). If restacking each of  

temporal frame of the structure as a long column vector with a resolution of  

pixels (Fig. 3), the multi-frame data matrix  is obtained, whose th ( ) 

column represents the temporal frame at time . PCP is able to blindly decompose 

 into a superposition of a low-rank matrix   and a sparse matrix 

 as 

  (13) 

 

by solving . is said to be sparse if it has only few non-zero entries, and 

  is low-rank in the sense that its SVD has few active singular values. 

      

The   representation expresses the multiple temporal close-up frames of 

structures as a superposition of a background component and an innovation component:  

represents the static or slowly-changing correlated background component among the 
temporal frames, which is naturally low-rank;  captures the innovation information in each 
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frame induced by the evolutionary damage, which is naturally sparse standing out from the 
background. See the proposed dynamic imaging framework for local structural assessment in 
Fig. 3 and Yang and Nagarajaiah (2015c) for more details. 

 

3.5.3. Damage identification via sparse classification 

Instead of building and training a parametric classifier in traditional pattern recognition 
methods, Yang and Nagarajaiah (2014d) proposed a new damage identification method in 
the classification framework by exploiting the sparsity nature implied in the classification 
problem itself, via sparse representation classification (SRC) of a test feature in terms of an 
adaptive reference dictionary (Fig. 4); it is found to be relatively intuitive and efficient. 

 
In the damage identification problem, the features are chosen to be the mode shape 

columns and are blindly extracted by CP from the system responses of the model. For an -

DOF system, if simulating  different damage classes (with different damage locations and 

severities), then all the  (typically ) mode shape columns are concatenated 

to yield a reference matrix  

  (14) 

 

        Now suppose the test features  are extracted from the current 

structural responses whose damage scenario coincides with one of the damage class of the 
reference matrix, say, the th class (but it is of course unknown beforehand), then  

( ) would equal  up to a scale difference. Expanding  in terms of the whole 

reference dictionary, 

  (15) 

 

where  is its underlying sparse representation whose non-zero 

element  directly assigns the damage class the test feature belongs to. As introduced 

above, finding the sparse solution  to the (highly) underdetermined linear system of 

equations Eq. (15) from the knowledge of  and  can be efficiently accomplished 

by  

  (16) 

 

SRC directly exploits the essence of the classification problem: the test feature can be 
most sparsely represented by the reference dictionary. It establishes an underdetermined 
linear system of equations whose underlying sparse solution can be efficiently recovered to 
dictate the damage class. Examples are shown in Yang and Nagarajaiah (2014d). 
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Fig. 3. The dynamic imaging of structures framework based on low-rank plus sparse 

representation of the multiple temporal images of the structure. 

 
Fig. 4. The sparse representation classification paradigm for damage identification. The test 
feature  (red column, e.g., mode shape column) only activiates itself via its 
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representation  (read in its own location, white denotes unactivated zero) in terms of 

the large reference dictionary  ( ) (by concatenating all feature columns of all 

candidate reference damage classes), expressed as a highly underdetermined linear 
system of equations . The unique non-zero element (red) in  (recovered by -

minimization) directly dictates which class the test feature belongs to, within the predefined 
reference dictionary. 
 

Concluding Remarks 

 
This paper briefly describes the most recent developments of novel sparse and low-

rank methods for monitoring, structural system identification, and damage detection by the 
author. This is a new area of research in structural system identification and structural 
health monitoring that offers many new tools and exciting possibilities for future research. 
There are many other researchers beginning to work or have already worked in this exciting 
new area of research, but unfortunately, due to space limitations, further details of the work 
by others cannot be described in detail, which can be found in a recent publication 
(Nagarajaiah and Yang 2016).  
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