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ABSTRACT 
 

     Topology optimization has progressed substantially in recent years. Numerous 
papers have been written, with more and more results making their way into structural 
designs. However, the literature on topology optimization for structures subject to 
stochastic dynamic loads is limited. Most current approaches use Monte Carlo 
Simulation or replace the dynamic loads with a static or harmonic equivalent. In 
contrast, this study accounts directly for the stochastic nature of the excitation, 
modeling it as a zero-mean filtered white noise; when combined with the equations of 
motion for the structure, an augmented state space representation is formed. The 
objective function of the optimization is defined in terms of the covariances of the 
structural responses. Focusing on the stationary structural responses, the stochastic 
optimization problem is converted into its deterministic counterpart. To illustrate the 
framework, topology optimization of a rectangular domain, representing a mid-rise 
building under seismic excitation, is explored for a multi-objective performance function. 
These results are a first step toward efficient topology optimization of stochastically 
excited structures. 
 
1. INTRODUCTION 
 
     Current structural design procedures are based on an iterative process, which 
guarantees structural safety but not optimal economy (Xu, et al. 2017). In this regard, 
topology optimization provides a general approach to obtain optimal material layout in a 
prescribed domain according to some cost function and subjected to given design 
constraints (Bendsøe and Sigmund 2003). Extensive research has been conducted in 
this field to develop well-posed formulations (Bendsøe and Kikuchi 1988, Sigmund and 
Petersson 1998, Sigmund 2007) and to solve the numerical problems generated by this 
approach, such as mesh dependency, checkerboarding, islanding, and local minima 
(Diaz and Sigmund 1995, Sigmund and Petersson 1998). 
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     Topology optimization has been successfully applied to solve the minimum 
compliance problem subjected to deterministic static loading for general structures 
(Bendsøe and Sigmund 2003, Talischi, et al. 2012), as well as buildings (Stromberg, et 
al. 2012). It also has been applied to dynamic problems such as eigen-frequency 
optimization for free vibration (Olhoff 1989) and minimum dynamic compliance for 
forced harmonic vibration (Ma, et al. 1995). However, such deterministic approaches 
cannot accommodate stochastic dynamic loads which civil structures frequently 
undergo (e. g., winds, earthquakes, traffic, etc.; see Soong and Grigoriu 1993), and 
therefore, produce suboptimal designs. 
     Structural optimization of stochastically loaded structures has been slower to 
develop than its deterministic counterpart. Most of the research has been done in size 
optimization using Monte Carlo Simulation (Balling, et al. 2009; Allahdadian and 
Boroomand 2016).  Recently, Chun, et al. (2016) proposed a reliability-based topology 
optimization approach for a Gaussian stationary stochastic excitation, using a discrete 
representation of the excitation and obtaining solution in the time-domain.  These 
approaches are computationally expensive and convergence is only obtained in a 
statistical sense.  Xu, et al. (2017a,b) proposed a structural optimization method for 
linear and nonlinear structures subjected to both stationary and nonstationary 
stochastic excitation; the performance function was formulated in terms of the response 
covariances, which were obtained through solution of the Lyapunov equation (Soong 
and Grigoriu 1993). 
     Directly applying the approach in Xu, et al. (2017a,b) to topology optimization 
results in large-scale problems for which traditional solution of the Lyapunov equation is 
intractable. Solution of the Lyapunov equation (i.e., AX + XA

T 
+ Q = 0) is typically 

obtained using the Bartels-Steward or the Hessenberg-Schur algorithms (Golub, et al. 
1979), which require the Schur decomposition of the matrix A. These methods 
generally provide good results; however, the cubic time complexity and quadratic 
memory complexity impose a constraint on the size of problems that can be considered 
(Kressner 2008). Due to the low-rank nature of the matrix Q, other techniques has been 
developed, including Krylov subspace methods (Saad 1990), matrix sign function 
decomposition with Newton's method (Higham 2008), and associated variations. These 
methods typically fail when the symmetric part of A is not negative definite (Benner, et 
al. 2008), which is the case in this study. In addition, the Alternating Direction Implicit 
(ADI) iteration algorithm was adapted to solve the Lyapunov equation with general A 
and low-rank Q (Penzl 1999, Benner, et al. 2008), which makes it an attractive option 
for the solution of large-scale Lyapunov equations found in topology optimization of 
structures subjected to stochastic dynamic loading. 

     This study proposes a topology optimization framework for stochastically excited 
structures, using a performance function in terms of the covariance of the stationary 
structural responses, obtained by solving a large-scale Lyapunov equation. An adjoint 
method is used to obtain the sensitivities of the performance function, which allows the 
use of efficient gradient-based updating procedures. Illustrative examples are provided 
for the optimization of a mid-rise building subjected to a stochastic ground motion using 
drifts-based and acceleration-based performance functions. The results demonstrate 
the efficacy of the proposed approach for multi-objective topology optimization of 
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stochastically excited structures. 
2. STOCHASTIC EXCITATION AND RESPONSE 
 
     This section formulates the equations of motion as a state space representation, 
and models the input excitation as a filtered white noise. An augmented state space 
representation is then formed, and the stationary covariance of the responses are 
obtained via solution of the Lyapunov equation. 
 
2.1 Equation of Motion and State Space Representation 
     The equation of motion (EOM) of an arbitrary N-degree-of-freedom linear system 
is given by 
 

     (1) 

 
where M is the mass matrix; C is the damping matrix; K is the stiffness matrix; u is the 
displacement vector; f(t) is the input excitation vector; and G is the load-effect matrix. In 
topology optimization, these matrices are typically obtained using a Galerkin finite 
element approximation with first order shape functions. The input excitation vector, f(t) 
is assumed to be a stationary stochastic process. 
     Defining the state vector as  
 

        (2) 

 
the state space representation of the system is given by 
 

        (3) 

 
where the matrices As and Bs are given by 
 

       (4) 

 
and the matrices Cs and Ds depend on the desired output y. 
 
2.2 Stochastic Excitation Model 
     In this study, the excitation is assumed as a zero-mean stationary stochastic 
process that can be modeled as a filtered white noise, admitting the following state 
space representation 
 

         (5) 

 
where xg is the state vector of the excitation; the matrices Ag, Bg, and Cg are determined 
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by the characteristics of the excitation; and w(t) is a multi-dimensional white noise 
described by 
 

     (6) 

 
where  is the expected value operator; S0 as the constant two-sided power spectral 

density matrix of the noise; and δ() is the Dirac delta function. 
     Defining the augmented state vector as 
 

         (7) 

 
then the augmented system is given as 
 

          (8) 

 
where the matrices Aa, Ba, and Ca are 
 

.  (9) 

 
2.3 Stochastic Structural Response 
     The covariance matrix of the vector xa is defined as 
 

     (10) 

 
Because the excitation is a zero-mean process, then the response is also a zero-mean 
process; consequently the covariance of the response is given by 
 

      (11) 
  
     The covariance of the stationary response of the augmented state is governed by 
the Lyapunov equation 
 

        (12) 

 
and the covariance of the system output y is given by 
 

.    (13) 

 

Because the matrix Aa is Hurwitz, and the matrix 2𝜋BaS0Ba
T given in the last term of Eq. 

(12) is positive semidefinite, the solution for y is unique and positive semidefinite.  
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3. PROBLEM FORMULATION AND SOLUTION 
 
     This section summarizes the topology optimization framework for structures 
subjected to stochastic excitations proposed in (Gomez and Spencer 2017), including 
the objective function and the constraints. The details of the topology optimization 
solution process are also presented. 
 
3.1 Topology Optimization Formulation 
     The topology optimization is based on intermediate element densities (Bendsøe 
and Sigmund 2003), such that for each element, a relative density variable z is chosen. 
SIMP interpolation is used for the Young's modulus and density for each element, 
which yields 
 

         (14) 

 
where E0 and ρ0 are the Young's modulus and density for the solid material, p and q are 
the penalization factors, and ϵ is a small number. 
     The optimization formulation is given by finding the vector of density variables z, 
 

   (15) 

 
where : represents the double dot product between matrices, F is a symmetric positive 
semidefinite matrix, V is the volume, Vmax is the volume limit, and zmin and zmax are the 
lower and upper bounds on the density variables. Note that the proposed performance 
function allows many types of responses (e.g., displacements, drifts, accelerations) of 
one or many points; and that the performance function is completely defined by the 
covariance of the response. 
     As indicated previously, the covariance of the response of the structure subjected 
to a stochastic process is obtained by solving the Lyapunov equation in Eq. (12), and 
consequently, the topology optimization problem is deterministic. Fig. 1 shows the 
flowchart for the solution procedure of the optimization problem. The remainder of this 
section details the respective steps in this procedure. 
 
3.2 Lyapunov Equation Solver 
     The Lyapunov equation Eq. (12) can be rewritten as 
 

     (16) 
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where Aa is a N N  matrix;  is an N m  matrix with m much smaller 
than   

ANALYSIS: Obtain system matrices for 
current variables and obtain covariance by 

solving Lyapunov equation

SENSITIVITY:  Obtain constraints and 
performance function sensitivities by 

solving the adjoint Lyapunov equation.

UPDATE: Obtain the new values for design 
variables using MMA.

INITIALIZE: Mesh, create solid material 
matrices and excitation matrices, initial 
variables, projection filter matrix, etc.

CONVERGENCE?

NO

OPTIMAL RESULT

YES

 
 

Fig. 1 Topology optimization flowchart for stochastically excited structures 
 

N; and  is the lower Cholesky factor of S0. The Cholesky factor ADI iterative algorithm 

is applied to obtain the complex matrix Z (Benner, et al. 2008) such that  
where 
 

     (17) 

 
and the matrices Vi are obtained using the iterative procedure showed in the following 
equations 

  (18) 

 
where the overscore denotes the complex conjugate, pi are complex shift parameters 
with negative real parts that satisfy the following minimax problem 
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       (19) 

 
where σ(Aa) denotes the spectrum of Aa. The algorithm proposed by Penzl (1999) to 
obtain a set of sub-optimal parameters is used. 
     The accuracy and efficiency of the method depend on 4 parameters: k

+ is the 
number of Ritz values using power iteration, k

- is the number of Ritz values using 
inverse iteration, l is the number of parameters, and n is the number of iterations. A 
numerical test of a 5 x 15 rectangular domain discretized into 7500 elements can show 
the convergence and accuracy of the method. The residual of the Lyapunov equation is 
defined as 
 

.           (20) 

 
Fig. 2 shows the convergence of the logarithm using the Frobenius norm of the residual 
R while varying the number of iterations and the number of parameters for a fixed 
number of Ritz values (k+ = 50, k

- = 25). The error norm approaches zero as the 
number of iterations is increased. 

 
 

Fig. 2 Convergence of the log of the Frobenius norm of the residual of Eq. (16) 
 
3.3 Sensitivity Analysis 
     The gradient of the performance function and constraints are required to use the 
chosen updating procedure, which is the the method of moving asymptotes (Svanberg 
1987). The performance function defined in Eq. (15) depends on the covariance matrix, 
which is implicitly defined by Eq. (12); hence, an adjoint method is implemented to 
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eliminate implicitly defined gradients and reduce computational time (Gomez and 
Spencer 2017). 
     The sensitivity of the performance function is given by the following equation 
 

    (21) 

 
where the sensitivities of the performance function require the derivatives of the 
matrices Aa, Ba, and F that were explicitly defined in previous sections; and the 
Lagrange multiplier matrix Λ, which is symmetric and positive semidefinite, is obtained 
by solving the adjoint Lyapunov equation 
 

           (22) 

 
Note that F can be expressed as a low-rank matrix product, hence, the algorithm 
described in section 3.2 also can be applied here. 
     A numerical test of a rectangular domain of 5 x 15 discretized into 300 elements 
shows the accuracy of the method. Fig. 3 provides a comparison of the sensitivities of 
the covariance of the top lateral displacement with respect to each element variable 
using the adjoint and finite difference method. As these figures demonstrate, the 
proposed adjoint method accurately computes the sensitivities. Also, note that the 
adjoint method reduces time complexity, because the total number of Lyapunov 
equations to be solved is reduced, admitting use of the CF-ADI solver. 
 

 
Fig. 3 Sensitivity of the covariance of the top lateral displacement using adjoint method 

(left) and finite difference method (right) 
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4. ILLUSTRATIVE EXAMPLES 
 
     In this section, the proposed framework is illustrated through examples optimizing 
the lateral force resisting system of a building subjected to a seismic ground motion in 
the horizontal direction. In the equation of motion, G is the load-effect vector, which has 
components equal to 1 only for the DOFs in the direction of the ground motion, u is the 
relative displacement to the ground, and f is the scalar stochastic ground acceleration. 
The design domain is a 5 x 15 rectangle, which is depicted in Fig. 4. This domain is first 
optimized to minimize lateral interstory drift; subsequently, a Pareto optimization 
approach is employed to explore the tradeoffs between minimizing the lateral interstory 
drifts and lateral absolute accelerations, which are competing objectives (Xu, et al. 
2017).  
     The solid linear elastic material has the following properties: Young's modulus 
E

0
 =210 GPa, Poisson's ratio ν = 0.3, density ρ = 2400 kg/m3, and Ersatz parameter  

ϵ = 10
-4. The domain has an uniform thickness of 0.10 m; to achieve more realistic 

topologies (Stromberg, et al. 2012), the domain is bounded by 0.40 x 0.40 columns with 
the same material properties; the continuum domain is assumed to be in plane stress. 
The continuum domain is discretized using 7500 Q4 elements, and the boundary 
columns are discretized using 180 frame elements such that their nodes coincide with 
the nodes of the Q4 elements. Two additional floor lumped masses of 6000 kg are 
included at each floor to simulate floor mass (see red dots in Fig. 4), which is equivalent 
to 20 times the total allowable mass of the design domain. The radius of the projection 
filter is equal to 0.35. 
 

 
 

Fig. 4 Rectangular domain geometry for the numerical examples 
 
     The ground motion is modeled using a Kanai-Tajimi spectrum with S0 = 1; the 
space state matrices are 
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    (23) 

 
where ωg and ζg are the natural frequency and damping ratio of the ground excitation 
model, respectively. ωg = 20.3 rad/s and ζg = 0.32 are chosen in the first example 
corresponding to the average values of 140 earthquake records (Lai 1982). 
 
4.1 Drift Optimization of a 3-Story Building 
     In this example, the sum of the covariance of the lateral interstory drifts is 
minimized. The performance function chosen for this optimization is given by 
 

       (24) 

 
where Δui is the lateral interstory drift of the ith floor. The matrix F can be rewritten as 

CC
T, where C is an fN N  matrix whose i

th row has a 1 in the i
th floor lateral 

displacement DOF, -1 in the th1i   floor lateral displacement DOF, and the other 
entries are zeros. The volume is constrained to be less or equal than 0.30 of the solid 
domain. 
     The results in Fig. 5 show the convergence of the performance function and that 
the volume constraint is enforced. The optimal topology for interstory drift optimization 
is composed of 3 pairs of braces with stiffness inversely proportional to height, which 
coincide with engineering intuition. This result is consistent with the results obtained by 
Xu, et al. (2017) for parametric optimization of shear building subjected to stochastic 
ground motions. Also, note that for the bottom brace, the intersection point is not 
centered vertically. Additionally, the first and second frequencies are 29.6 rad/s and 
86.5 rad/s, respectively; which are far from the dominant excitation frequency of 20 
rad/s. 
 
4.2 Pareto Optimal Front of a 3-Story Building 
     Xu et al. (2017a,b) showed that the interstory drift and absolute acceleration are 
competing objectives for seismically excited structures. Therefore, the Pareto optimal 
curve is introduced to explore the tradeoffs between these two objectives. A combined 
performance function is defined as 
 

     (25) 
 
where 
 

       (26) 
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α is the weighting parameter between 0 and 1, and the overbar indicates that the 
performance function is normalized by the minimum in the respective single-objective 
functions, such that the performance function is dimensionless. When 0  , the 

function represents the interstory drift objective, and when 1  , the function 

represents  
 

    
Fig. 5 Results for sum of covariance of interstory lateral drift function: a) optimal 

topology, b) performance function evolution, c) volume constraint evolution 
 
the acceleration objective. The volume is constrained to be less or equal than 0.30 of 
the solid domain. 
     In this example, the excitation is given by a white noise to provide uniform 
excitation to all frequencies. Fig. 6 shows the results for the topology optimization for 
two different values of α. As expected, as α increases, the topology transitions from the 
interstory drift objective to the acceleration objective: more stiffness and mass is 
allocated in the top floor and stiffness in the lower floors is reduced. Note that as α 
increases, the braces do not necessarily meet at the floors. 
     Fig. 7 shows the Pareto optimal front for this example, the x-axis represents the 

ratio of the maximum interstory drift standard deviation and the maximum interstory drift 
standard deviation for 0  , and the y-axis represents the ratio of the maximum floor 
acceleration standard deviation and the maximum floor acceleration standard deviation 
for 1  . All the points below the curve correspond to infeasible designs. 

 

 (a) 

(b) 

(c) 
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(a)  0   (b)  0.4   

 
Fig. 6 Topology optimization of the Pareto combination of the drift and acceleration 

performance objectives 
 

 
 

Fig. 7 Pareto optimal front of the example 
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5. CONCLUSIONS 
 
     This paper presented a multi-objective framework for topology optimization of 
stochastically excited structures. The input was modeled as a filtered white noise, and 
the performance of the structure due to this excitation was given in terms of the 
covariance of the stationary structural responses. The objective function for the 
optimization was defined as the trace of the product of a positive semidefinite 
symmetric and the covariance of the stationary response. The covariances were 
obtained by solving a large-scale Lyapunov equation using an algorithm which is 
efficient both in terms of memory and computational time. The objective function was 
shown to be general enough to represent displacement, interstory drifts, velocities, and 
accelerations at one or many points. A volume constraint was imposed to limit the 

design space, and the design variables were chosen as the relative densities in each 
element, which were bounded to achieve physically meaningful solutions. The material 
properties for intermediate densities were obtained using the SIMP interpolation rule; a 
linear hat projection filter was used to avoid numerical instabilities. The sensitivities of 
the performance function were obtained using an adjoint method, which requires the 
solution of an adjoint Lyapunov equation, also solved using the Lyapunov equation 
solver. Iterations were carried out using a gradient-based approach commonly 
employed in the topology optimization field. 
     The proposed framework was illustrated by conducting topology optimization for a 
rectangular domain meshed using 7500 Q4 elements, 180 frame elements in the lateral 
boundaries, and additional lumped floor masses, representing the lateral resisting 
system of a mid-rise building under stochastic earthquake loading. First, optimization 
was performed for the lateral interstory drift objective. The optimal topology was a 
system of 3 pairs of braces with stiffness inversely proportional to height. Subsequently, 
the trade-off between minimizing interstory drift and absolute floor acceleration, which 
are competing design objectives, was explored using Pareto optimal curve. To 
minimize acceleration, more stiffness was allocated in the top floor. These results 
demonstrate the efficacy of the proposed approach for multi-objective topology 
optimization of stochastically excited structures. 
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