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ABSTRACT 

Wind tunnel technique has emerged as a powerful tool for predicting wind-induced 
loads on high-rise buildings. Aerodynamic wind loads acting on buildings generate 
building vibrations in two swaying and one twisting directions. Accurate assessment of 
wind load combinations is an extremely important issue in the design of wind sensitive 
tall buildings. Traditional practice for determining wind tunnel derived wind load cases 
lacks a robust approach and relies on somewhat subjective judgments. This paper 
presents a novel optimization-based framework for systematically determining wind 
tunnel derived wind load cases for structural design of wind sensitive tall buildings. 
Specifically, an optimization-based framework is developed by firstly assuming that the 
probability function of the three load components in each incident wind direction can be 
expressed by a multivariate normal distribution so that the equivalence surface of 
probability corresponding to a specified value of the peak factor becomes an ellipsoidal 
one. An optimization algorithm is then applied to search for a convex polyhedral hull 
which serves as a design envelope covering all ellipsoidal thresholds in all incident 
wind directions. Individual load cases can be given in terms of the coordinates of the 
vertexes on the optimized design envelope. The objective function is to achieve more 
precise prediction of wind load combinations by minimizing the volume of the 
polyhedral design envelope in consideration of the minimum deviation of the polyhedral 
envelope surfaces from the ellipsoidal thresholds. The Pareto optimal theory is further 
integrated with this new method allowing for determining the appropriate total number 
of wind load cases for structural design of a building. One full-scale 30-story building
example is used to illustrate the effectiveness and practical application of the proposed 
optimization-based technique for evaluating peak resultant wind load cases.  
                                                
1) Research Assistant 
2) Associate Professor, Corresponding Author 
3) Assistant Professor 
4) Professor 
5) Engineer

mailto:cecmchan@ust.hk


1. INTRODUCTION 

Accurate assessment of wind-induced load effects plays a pivotal role in the 
structural design of high-rise buildings. The wind tunnel technique has long been 
recognized as an accurate and comprehensive experimental method for estimating 
wind loads for tall buildings. The high frequency base balance (HFBB) test has become 
one of the most common wind tunnel testing techniques capable of measuring 
aerodynamic wind loads that generate three-dimensional building vibrations in two 
translational and one twisting directions. For tall buildings with significant coupled 
lateral and torsional responses, the estimation of peak resultant load effects is an 
extremely important issue in the assessment of building performances under wind 
excitation. 

Isyumov (1982) proposed an approach for estimating the peak resultant load effects 
resulting from wind forces in the two swaying directions and the wind induced torque by 
using the SRSS rule with empirical joint action factors. Solari and Pagnini (1999) 
provided an analytical evaluation scheme of vectorial load effects from alongwind and 
crosswind load components which were considered uncorrelated. A dodecagon 
representing the envelope of critical load conditions was constructed, in which an 
elliptical threshold defined by the maximum and minimum values of a single process 
was enclosed. AIJ Recommendations (2004) assumed a bivariate normal distribution 
for crosswind and torsional load components in which the equivalence line of probability 
could then be interpreted as an elliptical line with a sloped major axis due to the 
consideration of correlation. An octagon enclosing the elliptical line served as an 
envelope to represent critical load combinations. 

The above studies focused on the determination of peak resultant load effects for 
one single process. In wind tunnel tests, attack angles between the approaching wind 
and the building may vary from 0 to 360 degrees resulting in many single processes. 
Therefore, critical load cases derived from all incident wind directions should be 
identified and a limited number accounting for governing conditions may be selected for 
design. A general outline from the Boundary Layer Wind Tunnel Laboratory in the 
University of Western Ontario (2007) specified 24 nominal critical load cases for all 
wind directions in which each critical load case was defined that the largest load effects 
possibly occurred when the load in one principal load direction was at its peak together 
with nominal loads in the other two principal directions. Boggs and Lepage (2006) 
suggested 10 to 20 or so load cases in which critical combinations were either defined 
as the principal component experiencing its peak values with other two companion 
values, or the maximum vector resultant values.  

Nonetheless, as far as the authors are aware, most if not all common practices for 
obtaining critical wind load cases and the appropriate number of load cases partially 
relies on subjective judgments. It is also important to realize that the use of existing 
combination methods may result in inconsistent and subjective assessments of critical 
wind load effects on buildings. Hence the research objective is to develop an explicit 
framework for systematically obtaining wind tunnel derived load cases for structural 
design of tall buildings. 



This paper presents a computer-based optimization approach to determine peak 
resultant load cases of wind-excited tall buildings with 3D correlated wind loads 
measured in wind tunnel tests. Multivariate normal distribution is assumed for random 
wind-induced structural load components in each incident wind direction, where the 
equivalence surface of probability can be interpreted as an ellipsoid. An optimization-
based framework is proposed for searching for a convex polyhedral hull which serves 
as a design envelope enclosing all the ellipsoids of wind loads corresponding to all 
incident wind directions. Individual combined load cases could be expressed in terms of 
the coordinates of the vertexes of the optimized polyhedral design envelope. The 
Pareto front is also integrated with this new methodology allowing for predicting the 
appropriate total number of load cases. As an illustrative example, a 30-story building is 
used to demonstrate the proposed optimization-based framework. The accuracy of the 
proposed method for systematic prediction of wind load cases of the building is 
examined and compared with the load cases obtained by the current wind tunnel 
practice. 

2. ANALYSIS OF WIND-INDUCED RESPONSE AND EQUIVALENT STATIC WIND 
LOADS IN HFBB TESTS 

In HFBB tests, the time-variant base moment components in two translational and 
one twisting directions are measured and considered as the aerodynamic loads acting 
on the building. For a multistory building modeled as three degrees of freedom with a 
lumped mass at each floor level, the equation of motion can be conveniently written in 
matrix notations as 

      ][][][][ FxKxCxM                                       (1) 

where [M], [C], [K], {x}, [F] are the mass matrix, matrix of damping coefficient, stiffness 
matrix, the displacements and external forces, respectively. Normal modes can be used 
to transform the system of coupled differential equations into a set of uncoupled 
differential equations, and then the n uncoupled equations in a transformed system of 
generalized coordinates appear as 

jjjjjjj fkcm                                                   (2) 

where mj, cj, kj, are the generalized mass, damping, stiffness for the jth mode; ξj and fj
are the generalized coordinate and force for the jth mode. Assuming that the structure 
has linear mode shape in two swaying directions and constant mode shape in torsion 
direction, the generalized force could be expressed by base moments measured in 
wind tunnel tests as
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in which ϕj is the jth mode shape vector; cxj, cyj and cθj are constants; Mxx, Myy, Mθθ are 
measured time histories of base moments. The time-variant responses ξj derived from 
each uncoupled equation are then superimposed for determining total responses of the 
structural system by
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where Φj=[ϕxj ϕyj ϕzj]T. The equivalent static wind load can be expressed as

}]{[ xKFeq                                                          (5) 

3. DEVELOPMENT OF AN ELLIPSOIDAL THRESHOLD FOR WIND LOAD 
COMBINATIONS IN EACH INCIDENT WIND DIRECTION 

Once the time-variant equivalent static wind loads are obtained, the base moment 
responses can be further utilized to estimate extreme wind load cases. The ellipsoidal 
threshold in each incident wind direction is firstly developed similar to that proposed by 
AIJ Recommendations (2004) to derive elliptical threshold. The assumption that two 
translational and one torsional base moment responses follow multivariate normal 
distribution is made, where the joint probability density function can be expressed as 
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where X, μ and Σ denote the vector of variables, mean values and covariance matrix of 
variables that are defined as 
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Mean values as well as covariance matrix are determined by the statistical analysis 
method from time history samples in each incident wind direction. Then the distribution 



forms ellipsoidal isopleths with sloped major axes due to the consideration of 
correlations among base moment responses. The length of the semi-principal axes of 
ellipsoidal threshold is correlated with the value of the peak factor g defined as 

iMii gMM max,                                                    (8) 

For a given value of the peak factor, the magnitude of the ellipsoidal threshold is 
determined. Extreme wind load combinations for three-dimensional base moment 
responses are then depicted as the surface of the ellipsoid. The confidence level of 
peak resultant loads that is equivalent to the volume of the ellipsoid is derived from the 
cumulative distribution function of the multivariate normal distribution shown as 
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By substituting Eq. (8) into the Eq. (9), the confidence level of the ellipsoidal 
threshold can be simplified and given explicitly in terms of the peak factor, g, as  
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where Φ is the cumulative probability for the standard normal distribution. 

4. OPTIMIZATION FRAMEWORK FOR DEVELOPMENT OF DESIGN ENVELOPE 

Once all the equal-probability ellipsoidal thresholds corresponding to wind 
approaching from all azimuths are established, they are integrated to form a statistical 
envelope boundary representing all critical wind load combinations for the building. In 
theory, every point on the envelope surface can be regarded as a peak resultant load 
case; but it is not practical to consider all possible points on the envelope for structural 
design. Consequently, the method is of interest in certain packing problems that a finite 
number of representative discrete critical load cases are to be determined from infinite 
number of load cases. In searching for the optimal design envelope encompassing 
critical wind load cases as its vertexes, one major goal of this paper is to develop a 
numerical optimization technique for defining a polyhedral envelope which encloses the 
ellipsoidal thresholds corresponding to all incident wind directions while attaining the 
minimum deviation from the original statistical envelope boundary as much as possible. 

4.1 Objective functions 
In the proposed optimization framework of obtaining the polyhedral design envelope,

the objective function is delineated as minimizing the volume of the polyhedral 
envelope since the polyhedron with the smallest volume after an outer approximation 
indicates that the difference between the polyhedral and the integrated ellipsoidal 
thresholds has been reduced to minimum in terms of volume. Furthermore, the 
objective function also serves as an important index to reflect that the shape distortion 



of the optimal design envelope from the integrated ellipsoidal threshold has been 
minimized. 

Consider a polyhedron with m triangular surfaces and n vertexes, design variables 
are defined as coordinates of each vertex ((x1,y1,z1), (x2,y2,z2), …, (xn,yn,zn)). For a 
convex polyhedron with the irregular shape, a simple way to calculate its volume is to 
split it into several tetrahedrons and sum their volumes up. For one tetrahedron with 
three vertexes i, j, k and an interior point O of a triangular surface of the polyhedron, the 
volume of the tetrahedron can be calculated in terms of design variables by (Slaught 
and Lennes 1919) 
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where OkOjOi rrr  ,,  area vectors defined respectively as
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By summing up the volumes of all the collective tetrahedrons, the total volume of the 
polyhedral design envelop with n vertexes and m triangular surfaces can be given and 
minimized as 
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4.2 Constraint functions 

Side constraints Constraints are defined as restrictions that must be satisfied to 
ensure the feasibility of a design requirement. To restrict undue conservatism in 
determining a critical load case, the coordinates of each vertex of the polyhedral design 
envelope must be limited within the statistical minimum and maximum values of 
measured base moment responses as
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Constraints for outer approximation   The outer approximation of the polyhedron based 
on integrated ellipsoidal thresholds is employed in this optimization framework for the 
sake of minimizing the risk of underestimating peak resultant loads. It is necessary that 
all the ellipsoidal base moment thresholds should be enclosed within the polyhedral 
design envelope. Mathematically such a restriction can be given implicitly for a HFBB 
test with d number of incident wind directions as follows 
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where ν is denoted as the set of points. In order to explicitly formulate Eq. (15), a linear 
transformation is needed to be first applied to transform each ellipsoid to a unit sphere 
centered at its origin. Eigenvalue analysis is carried out to facilitate this transformation 
by
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where ϕ and λ are the eigenvector and eigenvalue, respectively, derived from the 
eigenvalue analysis of the covariance matrix of base moment responses. The outer 
approximation can be implemented by ensuring that all surfaces of the polyhedral 
envelope and the transformed spheres should not intersect to each other in the 
transformed coordinate system. Then, it can be mathematically stated that the distance 
from the center of each sphere to each surface of the polyhedron should be larger than 
the radius of the sphere as
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where A0,h, B0,h, C0,h and D0,h are parameters in the function of surface h of the 
transformed polyhedron. For surface h with three vertexes i, j, k of the polyhedron, A0,h,
B0,h, C0,h and D0,h can be given in terms of the coordinate design variables of the three 
vertexes as 
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where σ is the RMS of time history samples in the incident wind direction p; g is the 
peak factor. 

Constraints for convexity The third type of constraint is to keep the polyhedral design 
envelope convex so that every vertex as a representative of one critical load case can 
be selected for practical use. To ensure convexity, every internal angle between two 
adjacent surfaces of the polyhedron must be within the range of 0 to 180 degrees as
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where 
hSn and

tSn  denote the inner normal vectors of surface for every two adjacent 
surfaces Sh and St of the polyhedron.

4.3 Optimization algorithms 
The minimization of the volume of the convex polyhedral design envelope enclosing 

all ellipsoidal wind load thresholds corresponding to all incident wind directions can be 
summarized as follows 
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Once the optimization problem is formulated with the objective function and design 
constraints being explicitly expressed in terms of design variables, the optimization 
solution can then be sought by the sequential quadratic programming (SQP) method. 
The SQP method is used to model nonlinear programming problems at a given 
approximate solution xk and then to use that solution to the subproblem to construct a 
better approximation xk+1 (Boggs and Tolle 1996).The optimal search direction is given 
in term of the Hessian matrix of the Lagrangian function, which is updated by a quasi-
Newton method in the optimization process. The searching for the optimization solution 
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is repeated a number of times until the minimum volume of the convex polyhedral 
design envelope is attained while satisfying all the specified design constraints. 

5. ILLUSTRATIVE EXAMPLE 

5.1 The 30-storey building and the wind tunnel test 
A study of a 30-story commercial building in Hong Kong was carried out to illustrate 

the effectiveness of this proposed optimization-based framework for obtaining wind 
load combinations. A 1:300 scale rigid model subjected to approaching wind profiles of 
the 50 year return period for 36 attack wind angles at 10° intervals for the 360° azimuth 
was examined in the HFBB test to obtain the aerodynamic base moments of the 
structure shown in Fig. 1. Once the finite element model was set up, an eigenvalue 
analysis was carried out to obtain dynamic properties of the building. The first natural 
frequencies for three fundamental modes are 0.306Hz, 0.368Hz and 0.737Hz 
respectively. Upon dynamic characteristics being determined, dynamic analysis of the 
structure in time domain was subsequently conducted to obtain base moment 
responses in two translational and one torsional directions corresponding to the time 
duration of 3600s. 

The ellipsoidal threshold for each incident wind direction based on multivariate 
normal distribution can be derived from time history samples. The value of the peak 
factor is taken as 3.5, the confidence level is thus to be 99.35% according to Eq. (10). 
The proposed optimization-based framework was carried out in search for the minimum 
volume polyhedral design envelope with a given number of load cases that encloses all 
ellipsoidal wind load thresholds corresponding to all wind load directions. 

Fig. 1 HFBB tests for a 30-story building 



Fig. 2 Floor plan for a 30-story building 

5.2 Results and discussion 
Fig. 3 and Fig. 4 present the optimized polyhedral envelopes that enclose all 

ellipsoids with 16 and 24 critical wind load cases respectively for structural design. The 
volume of each polyhedron converges to the minimum value with the aid of the SQP 
optimization algorithm. The number of load cases is specified in a range from 8 to 28 
and the corresponding volumes of the polyhedrons are computed. The result of the 
different trade-offs between the minimum volume polyhedrons and the number of load 
cases is given in the Pareto front as shown in Fig. 5. It is evident that a higher number 
of load cases is generally ended up with a smaller volume of the design envelope. It 
appears that the minimum volume of polyhedron reaches convergence when the 
number of load cases approach 24.  

The comparison of 24 load cases derived from the proposed optimization 
methodology and the current wind tunnel practice is given in Table. 1. These two 
approaches result in the volumes of design envelopes at 1.16×107(MN·m)3 and 
1.40×107(MN·m)3 respectively, indicating a 17% reduction has been achieved by the 
proposed optimization method. Since the volume is considered as an index to examine 
the departure of the approximated polyhedron from ellipsoidal thresholds, the smaller 
volume implies that the optimized design envelope provides more accurate prediction 
of maximum combined wind load cases. The comparison of critical load cases of two 
sets also indicates significant improvement of minimizing the risk of overestimating the 
extreme wind load effects. 



Fig. 3 Optimized design envelope with 16 load cases 

Fig. 4 Optimized design envelope with 24 load cases 

Fig. 5 The Pareto front for volumes of envelopes 
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Table. 1 Comparison of 24 load cases 

Load 
Cases

Traditional methods Optimization-based approach
Mx(MN•m) My(MN•m) Mz(MN•m) Mx(MN•m) My(MN•m) Mz(MN•m)

1 200.0 -90.0 17.1 -195.1 -68.5 17.1
2 200.0 250.0 17.1 260.7 162.1 16.0
3 -330.0 250.0 17.1 -25.4 221.8 17.1
4 -330.0 -90.0 17.1 -387.1 59.0 17.1
5 376.6 -120.0 10.0 288.1 -59.1 13.3
6 376.6 180.0 10.0 376.6 213.4 10.0
7 220.0 450.0 10.0 136.2 450.0 9.7
8 -180.0 450.0 10.0 -69.3 450.0 7.4
9 -515.2 180.0 3.0 -402.1 302.7 9.6

10 -515.2 -80.0 3.0 -515.2 -53.8 1.8
11 -300.0 -330.6 10.0 -265.1 -330.5 10.4
12 120.0 -330.6 10.0 -151.6 -330.6 10.9
13 376.6 -120.0 -8.0 376.5 -88.6 -12.5
14 376.6 180.0 -8.0 376.6 275.3 7.7
15 220.0 450.0 0.0 78.3 450.0 -1.8
16 -180.0 450.0 0.0 -352.1 349.4 3.1
17 -515.2 180.0 -3.0 -515.2 8.5 -2.6
18 -515.2 -80.0 -3.0 -515.2 -113.9 -1.2
19 -300.0 -330.6 -3.0 -92.1 -330.6 -0.4
20 120.0 -330.6 -3.0 185.5 -298.6 -5.7
21 200.0 -200.0 -18.5 63.5 -219.7 -18.5
22 200.0 0.0 -18.5 185.6 26.9 -18.4
23 -90.0 0.0 -18.5 -62.6 -69.1 -18.5
24 -90.0 -200.0 -18.5 -157.2 -181.5 -15.1

6. CONCLUSIONS 

This paper presents a systematic combination scheme for obtaining critical wind 
load cases for tall building design with the less overestimation of peak resultant loads 
from time-variant aerodynamic wind loads measured in HFBB tests. The multivariate 
normal distribution was applied in determining extreme wind load combinations in each 
incident wind direction. Subsequently, the optimization-based framework was 
developed to seek the minimum volume of the polyhedral design envelope subject to 
the satisfaction of design constraints for ensuring the outer approximation and 
convexity of the optimal design envelope. Design variables were the coordinates of 
each vertex on the polyhedron. The Pareto front is used to determine the best trade-off 
solution between the minimum volume of polyhedral design envelope and the minimum 
number of wind load cases. The new optimization method provides a powerful tool for 



accurately predicting extreme wind load combinations for structural design of tall 
buildings. 
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