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ABSTRACT 

An integrated method is proposed for structural nonlinear damage detection based 
on time series analysis and the higher statistical moments of structural responses in 
this study. It combines the time series analysis, the higher statistical moments of AR 
model residual errors and the fuzzy c-means (FCM) clustering techniques. A few
comprehensive damage indexes are developed in the arithmetic and geometric manner 
of the higher statistical moments, and are classified by using the FCM clustering 
method to achieve nonlinear damage detection. A series of the measured response
data, downloaded from the web site of the Los Alamos National Laboratory (LANL)
USA, from a three-story building structure considering the environmental variety as well 
as different nonlinear damage cases, are analyzed and used to assess the 
effectiveness and robustness of the new nonlinear damage detection method. Some 
valuable conclusions are made and related issues discussed as well.

1. INTRODUCTION 

Structural damage detection (SDD) plays the most pivotal role in the process of 
structural health monitoring (SHM) (Gul and Catbas 2011). Currently, the vibration-
based damage detection technique has been recognized and intensively studied as a 
promising tool for monitoring structural conditions and detecting structural damages 
(Doebling et al. 1998, Yan et al. 2001, Sohn et al. 2004, Carden and Fanning 2004,
Zhou et al. 2013, Yu et al. 2013). SDD is arguably one of the most critical components 
of SHM. Identifying the presence of the damage might be considered as the first step to 
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take preventive actions and to start the process towards understanding the root causes 
of the problem (Gul and Catbas 2011). Most of these vibration-based damage detection 
methods can be classified into two groups: model based and feature based (Zhang 
2007). For the latter, especially for those based on the time series statistical analysis in 
constructing time-series signature for direct damage diagnosis have gained 
considerable attention recently since their implementation for an automated SHM 
system is relatively more feasible compared to the model based methods (Lu and Gao 
2005, Chen and Yu 2013, Yao and Pakzad 2014).  

Most of the time series analysis based methodologies aim to fit time series models 
to the vibration data and then try to detect the damage by extracting damage features 
from these time series models. As one of key steps in the SHM, the ideal approach for 
features extraction is to choose features that are sensitive to damage, but are not 
sensitive to operational and environmental variations. However, such an approach is 
not always possible in real-world structures, and intelligent feature extraction 
procedures are usually required (Worden et al. 2007). Some of them directly compare 
the time series models whereas some of them use the residual errors when the new
data is used with the previously created model. In a statistical manner, these 
methodologies usually make use of AR (Auto-Regressive) (Fugate et al. 2001, Gul and 
Catbas 2009, Zugasti et al. 2012, Yao and Pakzad 2014), ARX (Auto-Regressive 
models with eXogenous outputs) (Sohn and Farrar 2001, Lu and Gao 2005, Gul and 
Catbas 2011), ARMA (Auto-Regressive Moving Average) (Nair et al. 2006, Omenzetter 
and Brownjohn 2006, Carden and Brownjohn 2008) and ARMA/GARCH models (Chen 
and Yu 2013) to detect the damage of structures.

Fugate et al. (2001) fitted  an AR model to the measured acceleration-time-histories 
from an undamaged structure, defined the residual errors quantifying the difference 
between the prediction from the AR model and the actual measured time history at 
each time interval as the damage-sensitive features, and employed X-bar and S control 
charts to monitor the mean and variance of the selected features for structural damage 
detection. Zugasti et al. (2012) presented the application of two damage detection 
methods to a laboratory tower. The second one was based on AR modeling of the 
signals involved. The results showed that two methods were able to correctly detect 
damage in the structure that was simulated by loosening some of the bolts in the joints,
but the second method is more stable. As potentially competitive damage detection 
techniques, Yao and Pakzad (2012)  proposed and studied two time series-based 
structural damage detection algorithms using statistical pattern recognition. One of 
them uses the Ljung-Box statistic of AR model residual sequence as damage index, the 
other uses the Cosh spectral distance of the estimated AR model spectrum. Compared 
with existing algorithms based on AR model residual variance and coefficients distance, 
the Ljung-Box statistic provides a more accurate account of the structural damage and 
Cosh spectral distance is less sensitive to changes in excitation sources. Subsequent 
applications to vibration data from simulation and lab experiments show that the Ljung-
Box statistic is indeed a more sensitive feature than residual variance in most cases, 
while Cosh spectral distance tends to be more stable than Mahalanobis distance of 
coefficients. Further, Yao and Pakzad (2014) derived the sensitivity expressions of two 
damage features, namely the Mahalanobis distance of AR coefficients and the Cosh 
distance of AR spectra, with respect to both structural damage and measurement noise 



level. The effectiveness of the proposed methods was illustrated in a numerical case 
study on a 10-DOF system, where their results were compared with those from direct 
simulation and theoretical calculation. 

Sohn and Farrar (2001) proposed a two-step AR-ARX (auto-regressive and auto-
regressive with eXogenous) model to predict the time series and subsequently used the 
standard deviation (STD) ratio of the residual error to indicate the damage. Lu and Gao 
(2005) developed a novel method to construct a novel auto-regressive time-series 
signature for the diagnosis of structural damage. The model stems from the linear 
dynamics and is formulated in the form of the ARX model involving only the 
(acceleration) response data. When the reference model is applied on the measured 
response of an unknown state, the STD of the residual error is used as a damage 
feature. Gul and Catbas (2011) extracted different damage features from ARX models 
created for the different clusters. Although the proposed methodology showed great 
success for the examples under investigation, the authors also acknowledged that the 
methodology should be verified with more laboratory experiments using different types 
of structures and the methodology should also be improved for damage detection with 
ambient vibration data.  

Nair et al. (2006) used an ARMA model and used the first three AR components as 
the damage sensitive feature and they were able to identify and locate the damage. 
Omenzetter and Brownjohn (2006) used Auto-Regressive Integrated Moving Average 
(ARIMA) models to analyze the static strain data from a bridge during construction and 
when it was opened to service. Although the authors were able to detect structural 
changes with the methodology, they also acknowledged that the location and severity 
of the damage could not be identified. Carden and Brownjohn (2008) presented a 
statistical classification algorithm based on analysis of a structural response in the time 
domain. The time-series responses are fitted with ARMA models and the ARMA 
coefficients are fed to the classifier. The approach is demonstrated with experimental 
data from the IASC-ASCE benchmark four-storey frame structure, the Z24 bridge and 
the Malaysia-Singapore Second Link bridge. The classifier is found to be capable of 
identifying structural change in all cases and of forming distinct classes corresponding 
to different structural states in most cases. However, the approach may not be the most 
suitable SHM paradigm for structures with only ambient dynamic excitation. 

However, all of studies mentioned above are based on linear AR, ARX and/or 
ARMA models and assumed the residual error obeys normal distribution. Unfortunately, 
the states with the nonlinearities show that an assumption of normality is not justified in 
the real world (Figueiredo et al., 2009). This assumption often increase misdiagnosis 
rate because the damage information main focused on the tails of distribution where 
slight deviations from the normal condition can be seen. These traditional linear time 
series analysis based methods cannot deal with nonlinear damages effectively, such as 
the fatigue cracks that open and close upon dynamic loading (Chen and Yu 2013). 
Apart from the mean and standard deviation of the time histories, Mattson and Pandit 
(2006) also used the higher-order moments of the residuals obtained from vector AR
models to detect damage. They pointed out that the residual-based method is capable 
of identifying non-linear damage signatures that are too deeply buried in the system 
dynamics to be identified directly from the raw data, but found that only use of 
skewness and kurtosis as features for damage diagnosis is less reliable than the 



variance (Carden and Brownjohn 2008). However, Figueiredo et al. (2009) concluded 
that the skewness and kurtosis show some differences in the damaged states when 
compared to the undamaged states conditions. They can be used as features to detect 
damage that results in a linear system subsequently exhibiting nonlinear dynamic 
response. 

In this study, an integrated method is proposed for structural nonlinear damage 
detection based on time series analysis, the higher statistical moments of structural 
responses and the fuzzy c-means (FCM) clustering techniques. Six comprehensive 
damage indexes are developed in the arithmetic and geometric manner of the higher 
statistical moments, and are classified by using the FCM clustering method to achieve 
nonlinear damage detection. The background of theory of the integrated method is first 
presented in the section two. In order to assess the performance of the integrated 
nonlinear SDD method proposed in this study, some experimental data downloaded
from the web site of the Los Alamos National Laboratory (LANL) USA on a three-story 
building structure are adopted to conduct experimental verification in the following 
section. The effectiveness and robustness of the new nonlinear SDD method are finally 
analyzed and concluded.

2. BACKGROUND OF THEORY 

In this section, a procedure of the integrated method is presented based on time-
series analysis. Based on linear system theory, AR time series models are used to 
describe the acceleration time histories and are used in the analysis of stationary time 
series processes. A stationary process is a stochastic process, one that obeys 
probabilistic laws, in which the mean, variance and higher order moments are time 
invariant. 

2.1 Data standardization 
Supposing xi∈ R n×1 (i=1,2…p), denotes amplitudes of measured acceleration 

response data with p data sample at all n measurement points. In order to eliminate the 
effects caused by environmental and operational variations from the measured 
acceleration responses, the data standardization is necessary as follows
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Where, x , 2 and ˆix  are the mean, variance and standardized version of time 
series signal xi respectively. 

2.2 Traditional damage-sensitive index  
AR models attempt to account for the correlations of the current observation in time 

series with its predecessors. A univariate AR model of order p at j-th measured 



acceleration signal, or AR (p), for the time series can be written as 
( ) ( ) ( )j j jA q x k e k                           (4)
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series and ( )je k  is AR model residual error. The AR coefficients 1 2, , ,j j pja a aj j pj, , ,j j pj, , ,a a a, , ,a a a, , ,j j pja a aj j pj, , ,j j pj, , ,a a a, , ,j j pj, , ,  can be 
evaluated using a variety of methods. Here, the coefficients were calculated using the 
Yule-Walker equations (Box and Jenkins 1976). For the structural reference (health) 

state, the corresponding AR model can be made, the model parameter ( )ref
jA q  and 

residual error ( )ref
je k  can be obtained. Similarly, for any unknown structural test sample 

yj(k), its residual error is, 
( ) ( ) ( )test test

j j je k A q y k                    (6) 
If the residual error is assumed as a Gaussian normal distribution with a zero mean, 

the traditional damage-sensitive index (DI) is defined as the standard deviation (STD)
ratio of the unknown test state to the reference one as follows (Sohn and Farrar 2001), 

( ) ( ) / ( )j
std test ref

j je e e                   (7) 
When the test samples come from the structural health state, AR model can 

effective predict the sample, therefore the variance of the residual error is close to one 
of the reference sample, the STD ratio in Eq. (7) is approximately equal to one. When 
the test samples come from the structural damage state, the residual error will be 
increased, the STD ratio will larger than one, therefore, the STD ratio can be used to 
determine if the structures is damaged or not. 

2.3 Order of AR model  
The order of the AR model is an unknown value. A high-order model may perfectly 

match the data, but will not generalize to other data sets. On the other hand, a low-
order model will not necessarily capture the underlying physical system response. In 
order to find out the optimum model order, several techniques are used in this study, 
such as Akaike’s information criterion (AIC), partial autocorrelation function (PAF), final 
prediction error (FPE) etc. Finally, the AIC is selected in this study, which is used to 
assess the generalization performance of linear models. In a simple way, this technique 
returns a value that is the sum of two terms as follows 

2 2mAIC L m                    (8) 
Where Lm is the maximized log-likelihood of the residual error, and m is the number 

of adjustable parameters in the model. It assumes a tradeoff between the fit of the 
model and the model’s complexity. The first term is related to how well the model fits 
the data, i.e., if the model is too simple, the residual errors increase. On the other hand, 
the second term is a penalty factor related to the complexity of the model, which 
increases as the number of additional parameters grows (Box and Jenkins 1976). 

2.4 Nonlinear damage-sensitive index  
It should be noted that AR model is a kind of linear model and many classical 

statistical tests depend on the assumption of normality. This approach is based on the 



assumption that damage will introduce either linear deviation from the baseline 
condition or nonlinear effects in the signal and, therefore, the linear model developed 
with the baseline data will no longer accurately predict the response of the damaged 
system.  

In order to establish the underlying distribution of the data, some higher statistical 
moments are used to estimate the probability density function (PDF) of the measured 
signals without normal distribution. Moreover, it is expected that the damage can 
introduce significant changes in the acceleration-time-history PDFs and, as a 
consequence, the third and fourth statistical moments and PDFs are introduced as 
damage-sensitive features in this study. 

The third statistical moment is a measure of the asymmetry of the PDF. The 
normalized third statistical moment is called the skewness and is defined as 

3 3( ) [ ( )] / ( )j j j jskewness e E e m e e                 (9) 
where a positive skewness represents that the right tail is longer and that the area 

of the distribution is concentrated below the mean. On the other hand, a negative 
skewness means that the left tail is longer and that the area of the distribution is 
concentrated above the mean. The skewness of a standard normal distribution is zero. 

The fourth statistical moment is a measure of the relative amount of data located in 
the tails of a probability distribution. The kurtosis is the normalized fourth statistical 
moment and is defined as 

4 4( ) [ ( )] / ( )j j j jkurtosis e E e m e e       (10) 
where a kurtosis greater than three indicates a “peaked” distribution that has longer 

tails than a standard normal distribution. This means that there are more cases far from 
the mean. Kurtosis less than three indicates a “flat” distribution with shorter tails than a 
standard normal distribution. This property implies that fewer realizations of the random 
variable occur in the tails than would be expected in a normal distribution. The kurtosis 
of a standard normal distribution is three. 

Similar to Eq. (7), two damage-sensitive indexes are defined as the Skewness and 
Kurtosis ratio of structural unknown test state to its reference state as follows, 

( ) ( ) / ( )test ref
j j j

skew e skewness e skewness e      (11) 

( ) ( ) / ( )j
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j je kurtosis e kurtosis e                  (12) 
When the structure is in a health state, the skewness of the AR model residual error 

is close to zero, its kurtosis approaches to three. When the structure is damaged, the 
skewness will be positive or negative, the kurtosis will increase. When the test and 
reference samples come both from same state, the skewness and kurtosis will be 
identical and equal to one, or else they will be more or less than one, which can be 
used to detect the damage of structures. 

2.5 Integrated damage-sensitive indexes 
The damage-sensitive index (DI) in Eq. (7) is a linear traditional index, Eqs. (11-12)

are just partial DI indexes. In order to integrate their function at the same time, six DIs
are defines as follows in terms of arithmetic and geometric average meanings, 

1 ( ) / 2std skewDI                                                  (13)
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2.6 Structural damage detection (SDD) 
In the previous section, damage indexes have been defined, but it is difficult to 

choose a threshold values that characterize damage. In order to perform the damage 
detection, fuzzy c-means clustering (FCM) algorithm, which was first presented by 
Bezdek (1981), and recently applied to SHM problems by da Silva et al. (2008), is 
employed to clarify the features, and supply a fuzzy decision by using the membership 
of damage index in a cluster. This algorithm is an unsupervised classification algorithm 
which uses a certain objective function, described in Eq. (19), for iteratively determining 
the local minima. 
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where C is the total number of clusters and N is the total number of objects in 
calibration. uij is the membership function associated with the j-th object of the i-th 
cluster, which is updated by using Eq. (22) in each iteration step. The exponent m is a
measurement of fuzzy partition. centeri is the centroid of the i-th cluster, xj is j-th object 
of data set to be clustered, which is set to be any of DSIs here, dij denotes the distance 
between j-th object and the centroid of the i-th cluster, here, Euclidean distance is used 
as Eq. (21) (Matlab 2010). 

3. EXPERIMENTAL VERIFICATION 

In order to assess the performance of the integrated SDD method proposed in this 
study, some experimental data from the three-story building structure are adopted here, 
which is downloaded from the web site of the Los Alamos National Laboratory (LANL),
USA (Figueiredo et al. 2009). The three-story building structure as shown in Fig. 1 is 
used as a damage detection test bed, in which some detailed layout of the mass added 
at the base and nonlinearity source are shown in Fig. 2.

3.1 Structural damage scenarios 
The nonlinear damage was introduced through nonlinearities resulting from impacts 

with a bumper. When the structure is excited at the base, the suspended column hits 



the bumper. The level of nonlinearity depends on the amplitude of oscillation and the 
gap between the column and the bumper. The operational and environmental variety 
was simulated by adding mass and reducing stiffness at several different locations. 
Force and acceleration time series samples recorded for a variety of different structural 
state conditions were collected as shown in Table 1 together with information that 
describes the different states. Each state includes 10 observed cases, each case 
records 8192 consecutive data samples. For example, State#13-6-Test indicates the 
sixth observed data with case no of 126 in Table 1 for State #13 under unknown test 
condition. Therefore, there are 170 cases for 17 states in total, as listed in Table 1. 

Fig. 1 Three-story building model     Fig. 2 Added mass and nonlinearity source 

Table 1 Data labels of structural state conditions 
Group State Case State condition Description

1 State #1 1-10 Undamaged Baseline condition

State #2 11-20 Undamaged Mass = 1.2 kg at the base

State #3 21-30 Undamaged Mass = 1.2 kg on the 1st floor

State #4 31-40 Undamaged 87.5% stiffness reduction in column 1BD
2 State #5 41-50 Undamaged 87.5% stiffness reduction in column 1AD and 1BD

State #6 51-60 Undamaged 87.5% stiffness reduction in column 2BD

State #7 61-70 Undamaged 87.5% stiffness reduction in column 2AD and 2BD

State #8 71-80 Undamaged 87.5% stiffness reduction in column 3BD

State #9 81-90 Undamaged 87.5% stiffness reduction in column 3AD and 3BD

State #10 91-100 Damaged Gap = 0.20 mm

State #11 101-110 Damaged Gap = 0.15 mm
3 State #12 111-120 Damaged Gap = 0.13 mm

State #13 121-130 Damaged Gap = 0.10 mm

State #14 131-140 Damaged Gap = 0.05 mm

State #15 141-150 Damaged Gap = 0.20 mm and mass = 1.2 kg at the base
4 State #16 151-160 Damaged Gap = 0.20 mm and mass = 1.2 kg on the 1st floor

State #17 161-170 Damaged Gap = 0.10 mm and mass = 1.2 kg on the 1st floor



From Table 1, it can be found that the structural state conditions can be categorized 
into four main groups. The first group (State #1) is the baseline condition. The second 
group includes the states (States #2-#9) when the mass or stiffness of the structure are 
changed. Real-world structures have operational and environmental variability, which 
create difficulties in detecting and identifying structural damage. Such variability often 
manifests itself in linear changes in the stiffness or mass of a structure. In order to 
simulate such operational and environmental condition changes, tests are performed 
with different mass and stiffness conditions (States #2-#9). For example, the state 
condition labeled “State #4” described in Table 1 means that there is a 87.5% stiffness 
reduction in the columns located between the base and 1st floor at the intersection of 
plane B and D as illustrated in Fig. 2(b) by (Figueiredo et al. 2009, Chen and Yu 2013) 
(abbreviated as 1BD, other abbreviations can be identified in the similar way). The 
stiffness reduction consists of replacing the corresponded column by another one with 
half the cross section thickness in the direction of shaking. The third group includes 
damaged state conditions (States #10-#14) simulated through the introduction of 
nonlinearities into the structure using a bumper and a suspended column, with different 
gaps between them. Finally, the fourth group includes the state conditions (States #15-
#17) with nonlinear damage in addition to mass and stiffness changes used to simulate 
operational and environmental condition changes. 

3.2 Effects of environmental conditions and structural damage 
The dynamic characteristics of structures are easily affected by either structural 

damage or the operational environment conditions. How to determine whether it is due 
to the former or the latter, it is not easy. Sometimes the change in dynamic 
characteristics due to the latter is more significant than one by the former. Using the 
measured excitation force and acceleration responses, the frequency response function 
(FRF) can be obtained under the different conditions, as shown in Fig. 3. It can be seen 
from Fig. 3(a) that the structural frequencies have been shifted due to adding mass 
(State #3) or stiffness reduction (State #9) as compared with the FRF curve of  baseline 
health condition of structure (State #1) at Channel 5 although the structure is all in 
undamaged conditions. If the structural damage conditions (States #14 & 17) are 
compared with the baseline health one, Fig. 3(b) shows that the second frequency of 
structure will be increased under the nonlinear damage of structure (State #14).
Further, the third frequency of structure will be decreased if both the environmental 
condition and nonlinear damage are considered simultaneously (State #17). Therefore, 
it is very difficult to estimate the structural damage if the frequencies of structures are 
considered only. 

3.3 Traditional damage-sensitive indexes 
Fig. 4 shows the effects of AR model orders on the AIC of measured accelerations in 

baseline state (State #1). It can be seen that the changes in AIC curves are very small 
when the AR order is equal to or higher than 50, therefore, AR (50) is determined for 
prediction of the test samples in the following section. Fig. 5 compared the time 
histories of the measured acceleration responses with the fitted ones by using the AR 
(50) model. It can be found that the fitted ratio are reached to 68.3%, 85.8%, 92.59% 
and 90.08% for the data measured at Channels 2, 3, 4 and 5 respectively.  
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      Fig. 5 Meansured and fitted data                      Fig. 6 PDFs of AR residuals 

Moreover, the residual errors are calculated, the estimated probability density 
functions (PDFs) of residual errors are compared in Fig. 6. which are corresponding to 
State #1 in red solid line and State #13 in blue dotted line respectively. As listed in 
Table 1, the State #1 indicates one undamaged state of structure, but the State #13
represents a damaged one, in which the gap between the column and the bumper is 
set to be 0.1 mm. It can be seen that the estimated PDFs of residual errors has 
changed obviously after the damage occurs in the State #13 condition, particular for the 
Channels 4 and 5 near the gap. Therefore, the changes in the PDFs of residual errors 
can be used to identify the structural damage. The standard deviation (STD) ratios of 
the unknown test state to the reference one, as defined in Eq. (7), are shown in Fig. 7
for all 170 cases under 17 states in total as listed in Table 1. The damaged and 
undamaged states can be easily identified. 

3.4 Extraction of integrated damage-sensitive indexes 
Normal probability testing of AR residual errors in State#13-6 is shown in Fig. 8. It 

can be found that the unknown test State #13-6 is a damaged state because the AR 



residual errors are deviate from the normal distribution, particular for ones in Channels 
4 and 5. It will not completely reflect the statistical distribution if the standard deviation 
(STD) of AR residual errors are used only. The histogram of AR residual errors in State 
#13-6 is compared with the normal fitting PSD curves in solid red line in Fig. 9, which 
indicates that the distribution of residual errors is obviously different from the normal 
fitting PSD curves, particularly at channels 4 and 5, the kurtosis of AR residual errors 
are greatly higher than ones of the normal fitting PSD. 
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Fig. 7  STD ratios for all 170 cases                 Fig. 8 Normal probability testing 
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For all 170 cases under 17 test states in total as listed in Table 1, the skewness and 
kurtosis ratios of structural unknown test state to its reference state, as defined in Eqs.
(11) and (12), are calculated and shown in Figs. 10 and 11 respectively. If they are 
compared with ones in Fig. 7, it can be found that after the structure is damaged, the 
states with lower STD ratios at channels 4 and 5 in Fig. 7, i.e.. states #10 and #16, 
correspond to ones with higher skewness ratios and kurtosis ratios at channels 4 and 5 
in Figs. 10 and 11. This shows that the skewness and kurtosis ratios are the 
complementary to the STD ratio. 



Further, six integrated damage-sensitive indexes are calculated and shown in Fig. 
12. In comparison to the STD ratios in Fig. 7, it can be seen that the distribution of 
damaged indexes are more reasonable, the damaged and undamaged states of the 
structure can be easily identified. 
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Fig. 11  Kertosis ratios for cases   Fig. 12  Integrated damaged-sensitive indexes 

3.5 Structural damage detection 
In order to perform the SDD, the fuzzy c-means clustering (FCM) algorithm is 

employed to clarify the damage-sensitive features and used to supply a fuzzy decision 
by using the membership of damage index in a cluster as defined in Eq. (19). Here, the 
computation parameters C=2 and m=2 respectively. The analytical results of 
membership for the traditional STD ratio is shown in Fig. 13. It can be found that there 
are no damage in both states #10 and #16. In fact, the both SDD results are not correct 
because both states #10 and #16 are in damaged states. In comparison to other states, 
there are the largest gap between the column and the bumper, i.e. 0.2 mm, in both 
states #10 and #16. There are fewer opportunity to hit each other when the structure is 
excited, so the nonlinear damage severity is lower as well. However, the SDD result is 
correct in state #15 although the gap and the added mass are the same as ones in 
states #16. Only one difference between them is the different locations of added mass. 
It is at the base in state #15 but on the first floor in state #16. This affects the nonlinear 
interaction between the column and the bumper when the structure is excited at the 
base. It is also shown that the traditional STD ratio is easily affected by the 
environmental variability. 

All the membership results from six integrated DIs are listed in Table 2, in which, 
abbreviated capital character 'FP', i.e. false positive, represents that the healthy state of 
structure is deemed as the damage state. While 'FN', i.e. false negative, means that the 
damage state of structure is deemed as the healthy state. Moreover, sign 'xx/yy' 
indicates that there are xx misdiagnoses out of yy data sample cases. The criterion of 
diagnosis decision is accepted as the follows: the structure is deemed as a the healthy 
state if the membership value is lower than 0.5, otherwise, it is in a damage state.  
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Fig. 13  Membership due to STD ratio    Fig. 14  Membership due to DI2 and DI5

Table 2 Membership results for integrated damage-sensitive indexes 
State γstd DI1 DI2 DI3 DI4 DI5 DI6
FP 0/89 0/89 0/89 0/89 0/89 0/89 0/89
FN 31/80 3/80 3/80 2/80 5/80 3/80 13/80
1 0/9 0/9 0/9 0/9 0/9 0/9 0/9
2 0/10 0/10 0/10 0/10 0/10 0/10 0/10
3 0/10 0/10 0/10 0/10 0/10 0/10 0/10
4 0/10 0/10 0/10 0/10 0/10 0/10 0/10
5 0/10 0/10 0/10 0/10 0/10 0/10 0/10
6 0/10 0/10 0/10 0/10 0/10 0/10 0/10
7 0/10 0/10 0/10 0/10 0/10 0/10 0/10
8 0/10 0/10 0/10 0/10 0/10 0/10 0/10
9 0/10 0/10 0/10 0/10 0/10 0/10 0/10

10 10/10 0/10 0/10 0/10 0/10 0/10 0/10
11 10/10 1/10 0/10 0/10 0/10 0/10 0/10
12 1/10 0/10 0/10 0/10 0/10 0/10 0/10
13 0/10 0/10 0/10 0/10 0/10 0/10 0/10
14 0/10 0/10 0/10 0/10 2/10 0/10 10/10
15 0/10 0/10 0/10 0/10 0/10 0/10 0/10
16 10/10 2/10 3/10 2/10 3/10 3/10 3/10
17 0/10 0/10 0/10 0/10 0/10 0/10 0/10

It can be seen from Table 2 that all membership results from six DIs, i.e. from DI1
through DI6,  are better than ones due to the traditional STD ratio (γstd). The best result is 
from the DI3 because there are only two misdiagnosis out of 169 data sample cases. 
DI3 is the arithmetic average value of STD, skewness and kurtosis ratios of AR residual 
errors. Therefore, the skewness and kurtosis indexes can provide a benefic 
complement to the traditional STD ratios. This also indicates that the complementary 
among STD, skewness and kurtosis ratios has been verified.  
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Moreover, it can be also found that the results from DI2 and DI5, both due to STD 
and kurtosis ratios in the arithmetic or geometric way, are better than ones due to both 
DI1 and DI4. The membership results due to DI2 and DI5 are shown in Fig. 14. Further, 
the DI5 results are a little bit better than the DI2 result because the distribution of DI5
membership results are closer to the damage membership value of 100% as a whole 
when the structure is under all the nonlinear damaged states #10-#17, which indicates 
that all the nonlinear damaged states can be effectively identified. 

4. CONCLUSIONS 
In this study, an integrated method is proposed for structural nonlinear damage 

detection based on time series analysis, the higher statistical moments of structural 
responses and the fuzzy c-means (FCM) clustering techniques. Six comprehensive 
damage-sensitive indexes (DIs) are developed in the arithmetic and geometric manner
of the higher statistical moments, and are classified by using the FCM clustering 
method to achieve nonlinear damage detection. Some experimental data downloaded
from the web site of the Los Alamos National Laboratory (LANL) USA on a three-story 
building structure are adopted to assess the effectiveness and robustness of the new 
nonlinear structural damage detection (SDD) method proposed in this study. The 
illustrated results show that: (1) The proposed integrated method is an effective tool for 
structural nonlinear damage detection, the damaged and undamaged states of the 
structure can be easily identified based on the newly proposed method.  (2) The 
traditional standard deviation (STD) ratio of the residual errors is easily affected by the 
environmental variability. The skewness and kurtosis indexes can provide a benefic 
complement to the traditional STD ratio. (3) All membership results from six integrated 
DIs, i.e. from DI1 through DI6,  are better than ones due to the traditional STD ratio. The 
distribution of six integrated DIs are more reasonable. The best result is from the DI3 in 
the arithmetic average value of STD, skewness and kurtosis ratios of AR residual 
errors. DI2 and DI5, both due to STD and kurtosis ratios in the arithmetic or geometric 
way, are better than ones due to both DI1 and DI4. (4) Although the proposed integrated 
methodology showed great success for the examples under investigation, the authors 
also acknowledged that the methodology should be verified with more laboratory 
experiments using different types of structures in the field of structural engineering.
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