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ABSTRACT 

 
A lot of power and electrical researchers have paid much attention to the forced 

oscillation mechanism of power system low frequency oscillations. It points out that 
when the frequencies of cyclic load variations and interconnected network fluctuations 
coincide with the natural frequency of an oscillation mode, the power system will 
undergo a resonance. In this paper, the forced power oscillation owing to prime mover 
power disturbance in a thermal power plant is studied in view of a new strong modal 
resonance mechanism. As it is known that the Proportional-Integral (PI) controller in the 
speed-governor has a great effect on system eigenvalues, its parameters may be 
changed so that the system can pass close to strong resonance. Then, the optimization 
model is built to seek the speed-governor’s parameters in the resonance point and the 
Particle Swarm Optimization (PSO) algorithm is used here. Finally, the proposed idea is 
tested on a single machine infinite bus (SMIB) system and the parameters at resonance 
can be obtained. Under this case, the results of eigenvalue analysis and time-domain 
simulation suggest that when the parameters of the speed-governor are varied, the 
system indeed passes close to a strong modal and the mechanical power oscillation 
occurs. Therefore, it is proved that the prime mover power disturbance can be the 
source of power system forced power oscillations, and further the assumption of 
sinusoidal mechanical power disturbance is reasonable during the analysis of forced 
power oscillation. 
 
1. INTRODUCTION 
 

Several mechanisms have been suggested to better understanding low frequency 
oscillations and the negative damping mechanism (Demello, 1969) has been widely 
accepted by power and electrical engineers. Moreover, the forced power oscillation 
mechanism is another profound theoretical achievement, which is based on resonance 
theory. It indicates that the forced power oscillation may be caused by a sustained cyclic 
small disturbance in power system. If the frequency of the sustained cyclic small 
disturbance is close to an inherent oscillation frequency, the resonance could be 
induced, leading to forced power oscillation with high amplitude. However, a new strong 
modal resonance mechanism for forced power oscillations is proposed in Dobson 
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(2001). 
According to the existing studies, the cyclic load variations (Van Ness, 1966), (Rao, 

1988), (Rostamkolai, 1994), and the interconnected network fluctuations (Magdy, 1990) 
are found to be the main sources of the forced power oscillation. In Vournas (1991), the 
origin of forced low frequency oscillations introduced in power systems by low-speed 
diesel generators has been intensively investigated. 

Nevertheless, there exist two issues on the forced power oscillations. Firstly, most of 
the power plants are thermal or hydraulic in modern power systems. It is evident that the 
forced power oscillations caused by prime mover power disturbance are much more 
serious than those caused by cyclic loads and network fluctuations. However, the 
possibility of oscillations caused by the prime mover power disturbance in these power 
plants has not been carefully investigated and assessed. Secondly, it is commonly 
assumed that the mechanical power disturbance of a generator is sinusoidal in the 
analysis of low frequency oscillation of resonance mechanism (Xin, 2008). Its rationality 
should be studied and the condition with a sinusoidal and periodic mechanical power 
disturbance is needed to search. 

In this paper, the forced power oscillation caused by prime mover power disturbance 
is studied on a SMIB system and the sinusoidal mechanical power disturbance of a 
generator can be proved. 
 
2. PROBLEM FORMULATION 
 

The strong resonance mechanism of forced power oscillation is illustrated 
mathematically in Dobson (2001). It elaborates that when power system parameters 
change, two different damped oscillatory modes may move close and interact so as to 
cause strong resonance. Additionally, a 3-bus and a 9-bus power system are given as 
examples and they can pass near strong resonance by adjusting active power of the 
generators. While, this paper will expound that when the parameters of prime mover 
model are changed, the system can come close to strong resonance. 

Firstly，the simplified prime mover models are built according to the function and 
composition of prime mover. The whole models contain three parts: the Turbine Control 
Model (TCM), the Electro-Hydraulic Control Model (EHC), and the Steam Turbine Model 
(STM). Fig. 1 shows the relationship among these parts, generator model (GEN) and 
network. 
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Fig. 1 Schematic diagram of a thermal power unit 
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Here, PE is the active power of generator output, and its reference value is Pref. The 
real-time generator speed is ω. DLR is the turbine load reference signal and the high 
pressure steam flow rate is FHP. The governing valve lift is PGV and PM is the mechanical 
power. Excitation system model (EXC) regulates field voltage Efd in accordance with 
terminal voltage Vt. The detailed EHC model (IEEE Committee, 1973) is shown as Fig. 
2. 
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Fig. 2 EHC model 
 
KP and TI are the proportional gain and the time constant of the PI controller, and TSM is 
the servomotor time constant. Through analyzing and computing, the two parameters KP 
and TI have a significant impact on system eigenvalues. So they are excepted to be 
varied to cause strong resonance. 

Secondly，the values of KP and TI in strong resonance are sought. As it is known 
that there are n−1 kinds of electromechanical modes in a system with n generators, and 
there is at least one control mode related to the generator with prime mover. So one 
electromechanical mode related to the xth generator is chosen and its corresponding 
conjugate eigenvalues are assume as λ1=σ1+jω1

 and λ2=σ1−jω1. The control mode of 
prime mover in xth generator is selected and its corresponding conjugate eigenvalues 
are assume as λ3=σ2+jω2 and λ4=σ2−jω2. The two modes may come close and interplay 
by changing KP and TI of xth generator. 

In order to pass close to strong resonance, it is needed to let the frequencies and 
damping ratios of the two modes as equal as possible. That is, the distance between the 
two modes is made as close as possible in the complex plane. The optimization model 
can be built as following. 
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Here, the objective function is to make the distance between λ1 and λ3 as small as 
possible by adjusting KP and TI. PK min  and PKmax  are the lower and upper limit of KP. 

IT min  and IT max  are the lower and upper limit of TI. λj is the jth eigenvalue of the system, 

and there are m eigenvalues in the system. Except the zero eigenvalue, the real parts 
of other eigenvalues should be less than zero so that the system can remain stable. 
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According to Eq. (1), it is important to distinguish the electromechanical mode and 
the control mode from all the oscillation modes. The control mode can be identified by 
using eigenvalue sensitivities of KP and TI, and the sum of their amplitudes in the 
control mode is larger than others. On the other hand, the electromechanical mode is 
recognized through participation factor. The participation factor pki of the kth state 
variable in the ith mode is defined as: 
 
 ki ki kip = u v  (2) 

 
Here, uki and vki are the kth entry of the right eigenvector and the left eigenvector in the 
ith mode. The participation factor pki is a measure of the relative participation of the kth 
state variable in the ith mode. All the participation factors in the ith mode constitute the 
participation vector pi. If the element with the maximum amplitude in the participation 
vector pi is related to generator speed, the ith mode is regarded as an 
electromechanical mode. In this way, the desired electromechanical mode can be found. 

In this paper, the PSO algorithm (Zhang, 2008) will be used to obtain the values of 
KP and TI in order to meet the condition of strong resonance. Then, the SMIB system will 
be simulated to prove the above idea. 
 
3. THE SIMULATION IN SMIB SYSTEM  
 

The SMIB system is shown in Fig. 3 and the simulation will be conducted. 
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Fig. 3 Single machine infinite bus system 

 
Here, the generator G uses the 5th order model, and there is a self-shunt static 
excitation system model in it. Its prime mover models include TCM, EHC and STM. For 
eigenvalue analysis and transient simulation, the infinite bus Ninf is connected with a 
generator of the 2th order model. Under a normal operation, the active power and 
reactive power of generator G are 300MW and 145Mvar. 

After the PSO calculation, the values of KP and TI in strong resonance are achieved. 
In order to contrast, another two groups of KP and TI are chosen according to their 
ranges, as shown in Tab. 1. 
 

Tab. 1 Three groups of KP and TI 

Case KP TI 
1 1.8000 0.0600 
2 1.3969 0.0493 
3 1.3181 0.0467 
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Here, case1, case2 and case3 respectively represent the values of KP and TI before, as 
and after the strong resonance, and the values of case2 is the result of PSO. 

The parameters of case1~case3 are plugged into the EHC model, and the system 
eigenvalues are computed. After ignoring the zero eigenvalue and real eigenvalues, part 
eigenvalues are shown in Tab. 2. 
 

Tab. 2 Part eigenvalues of the system 

Case Eigenvalues 
Frequency

(Hz) 
Damping 
Ratio (%)

Electromechanical  
Relative Coefficient 

1 
−0.4782±j6.1082 0.9722 7.81 5.1322 
−0.7058±j4.7592 0.7574 14.67 0.07464 

2 
−0.3637±j5.5890 0.8881 7.47 3.3767 
−0.4182±j5.5799 0.8895 6.49 0.1566 

3 
0.06781±j5.6710 0.9026 −1.20 2.5653 
−0.7341±j5.6346 0.8968 12.92 0.2288 

 
At case1, the electromechanical mode is −0.4782±j6.1082 and the control mode is 
−0.7058±j4.7592. Their frequencies differ greatly and their damping ratios are both large. 
At case3, the electromechanical mode is 0.06781±j5.6710 and its damping ratio is less 
than zero. The control mode is −0.7341±j5.6346 and its damping ratio is larger than 
10%. At case2, the electromechanical mode is −0.3637±j5.5890 and the control mode is 
−0.4182±j5.5799. Their frequencies and damping ratios are very close, which meets the 
requirement of strong modal resonance. 

From Tab. 1, there is a small difference between the KP and TI values of case2 and 
case3. However, when the parameters vary from case2 to case3, the eigenvalues move 
obviously. This is because the eigenvalues are very sensitive to parameter variations at 
a strong resonance, and a small change of some parameters can result in an obvious 
variation of the eigenvalues. Furthermore, it is found that the right eigenvectors of the 
two modes are nearly aligned at strong resonance, which implies the pattern of 
oscillation of the two modes is nearly similar. 

Next, the transient stability analysis is conducted with a 2% step of reference 
voltage of the exciter at t=1~6s in three cases. Then, the response mechanical power 
(PM) of generator G is analyzed after the small disturbance disappearing from 7s to 30s, 
as shown in Fig.4. 
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Fig. 4 The response curve of mechanical power 

 
At case1, PM quickly returns to the normal value after some small oscillations. However, 
as case2 and case3, PM firstly stays increasing oscillation and then keeps sustained 
oscillation after 12s. The former is due to the strong modal resonance, and the latter 
results from the negative damping. From the PM response curve of case2, it’s realized 
that when the parameters of EHC are varied, the SMIB system indeed passes close to 
strong resonance and remain forced power oscillations. Since the system has no load or 
tie line, it draws a conclusion that the source of the forced power oscillation is the prime 
mover power disturbance. Additionally, the amplitudes of the forced power oscillation 
(case2) and the negative damping oscillation (case3) are almost equal. So the influence 
of the forced power oscillation is also great. 

To analyze the PM curve of case2 in Fig. 4, the Prony theory is used here. Without 
some DC components, the main modes are shown in Tab. 4. 
 

Tab. 4 Results of Prony analysis 

Mode Amplitude Damping 
Frequency

(Hz) 
Damping 
Ratio (%) 

1 0.5287 −0.6377 0.9590 10.5235 
2 0.4633 −0.000035 0.8903 0.0006 
3 0.3629 −1.7607 0.8368 31.7555 
4 0.0940 −1.8085 0.5272 47.9220 
5 0.0777 −0.6872 0.5752 18.6797 
6 0.0639 −1.2225 0.6534 28.5368 
7 0.0560 −1.8474 0.9193 30.4620 
8 0.0286 0.0001 0.5795 −0.0029 
9 0.0078 −1.0425 0.2874 49.9928 

10 0.0009 0.0005 0.3799 −0.0228 
11 0.0001 −0.0497 1.1750 0.6732 

 
Here, the PM curve includes eleven types of oscillation modes and the amplitudes of 
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mode1~mode3 are bigger. However, the damping ratios of mode1 and mode3 are larger 
so they will rapidly decay. The damping ratio of mode2 is very small and its amplitude is 
nearly unchanged. Therefore, mode2 is the main one. Compared with the two modes of 
case2 in Tab. 2, their frequencies are about equal. 

Hence, at case2, the PM increment after 12s can be approximately expressed as 
∆PM(t)=∆P ◌۟◌۟·sin(ωt). Apparently, the stabilized PM curve is varying as a sine wave. It is 
reasonable that the mechanical power disturbance of a generator is regarded as 
sinusoidal in the analysis of forced power oscillation. 

To avoid modal resonance, it is effective to change power flow. Suppose that the KP 
and TI of EHC are still equal to the values of case2, but the active power of generator G 
is added to 400MW. Under this condition, the system eigenvalues are shown in Tab. 5. 

 
Tab. 5 The complex eigenvalues of the system 

Eigenvalues 
Frequency

(Hz) 
Damping
Ratio (%)

Electromechanical 
Relative Coefficient 

−0.1821±j5.1815 0.8247 3.51 0.07088 
−0.5068±j6.5556 1.0434 7.71 5.9263 

 
Here, the frequencies and the damping of the electromechanical mode and the control 
mode differ greatly. The system cannot come close to strong resonance. Therefore, 
changing power flow can avoid the strong resonance. 
 
4. CONCLUSIONS 
 
This paper mainly analyzes the forced power oscillations caused by the prime mover 
power disturbance in view of the strong modal resonance. According to the optimization 
model and the PSO algorithm, the values of KP and TI at strong resonance can be found. 
The SMIB system is used to test this idea. When KP=1.3969 and TI=0.0493, the system 
can indeed pass close to a strong modal resonance and lead to mechanical power 
oscillations. The results of eigenvalue analysis and time domain simulation suggest that 
the prime mover power disturbance can be the source of power system forced power 
oscillations, and prove that the assumption of sinusoidal mechanical power 
disturbances is reasonable in the analysis of forced power oscillation. Additionally, 
strong resonance can be prevented by changing the active power of the generator. 
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