

New Direct Search Method for the Discrete Structural Optimization
with Nonlinear Constraints and Integer Index variables

*Hongwoo Lee1)

1)

 Department of Architecture, Seowon University, Cheongju, Chungbuk 361-742,
Republic of Korea

1) hwlee@seowon.ac.kr

ABSTRACT

This study proposes a new direct search method for discrete structural optimization
with nonlinear constraints, whose tentative name is Near-Up Search algorithm. The
algorithm combines ‘Near Points Search’ module and ‘Upward Direction Search’
module. The algorithm uses the integer index variables which were newly defined. Near
Points Search module is used for searching the adjacent design points to find a better
solution. Upward Direction Search module is used for searching the design points
which make the value of objective function bigger than the value by the current points
to find a feasible solution. The combinational operation of the two modules, Near-Up
Search algorithm can find the feasible and near optimal solution without gradient
information. The effectiveness of the proposed algorithm is shown through the use of a
classical truss optimization example.

1. INTRODUCTION

Most of the conventional numerical optimization techniques treat the design

variables as continuous things. Those techniques are inadequate for the structural
designs using commercially available fabricated sections as members which should be
expressed by discrete variables. To use the continuous optimization method in such
structural design the discreteness should be ignored by employing the round-off
technique, they may result in solutions far from optimum or even result in infeasible
values. Furthermore, optimization problems of structures are controlled by nonlinear
constraints. Therefore, it is very difficult to solve these complex problems with
conventional continuous optimization techniques(Hwang etc. 2001).

In this study, a new direct search algorithm for discrete structural optimization with
nonlinear constraints, Near-Up Search, is proposed. The simplicity of direct search can
make us overcome the complexity of structural optimization. A new type of variables,

1) Professor

716

‘integer index variables’, is introduced for the new algorithm to formulate the discrete
structural design problem. To demonstrate the ability of proposed algorithm, it is
applied to a classical truss design. The results are compared with those of ALGA in
MATLAB.

2. FORMULATION OF OPTIMIZATION PROBLEM

Let us consider the optimization problem with continuous variables and nonlinear

constraints which is :

																																				minimize	 		݂ሺݔሻ																																																							 (1.1)

ሻݔ௜ሺܿ			݋ݐ	ݐ݆ܾܿ݁ݑݏ ൑ 0	 													for		i ൌ 1,⋯ ,݉௖ (1.2)
																																																										ܾ௟ ൑ ݔ ൑ ܾ௨ (1.3)

where ݂ሺݔሻ represents the objective function which is 	

݂: ܴ௡ → ܴ, ܿ௜ሺݔሻ are the nonlinear constraints, ݔ is design variables,	ܾ௟ and ܾ௨ are the
lower and upper bound of variables. The variable is a vector ݔ ∈ ܴ௡ and expressed as
a point in design space. In sizing optimization problems, the objective function is taken
as the total weight of trial structure and the stress and displacement constraints are
considered. The variables are the sectional area of members of structure.

In this paper I want to introduce a new type of variables, ‘integer index variables’,
which has very important role in the new direct search method, Near-Up Search. Let us
assume that the sectional areas in Eq. 2 can be used in the sizing optimization of a
structure.

												Aሺ݅݊ଶሻ ൌ{1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09} (2)

The integer index variable ݔ௜ can be defined as the index of a element in the area

set in Eq. 2 for the sectional area of the ݅th member in the structure. So the variable
must be an integer between 1 and 10 because the number of possible elements shown
in the area set is 10.

																																																					1 ൑ ௜ݔ ൑ ௜ݔ ,10 ∈ (3) ܫ

In this definition, ‘ݔହ ൌ 3’ means that the area of 5th member of the structure is the

3rd element of the area set A in Eq. 2 and it is 1.99ሺ݅݊ଶሻ.
Using this integer index variable, the sizing optimization problem of a structure can

be expressed in the following form:

																																				minimize	 		݂ሺݔሻ																																															 (4.1)

ሻݔ௜ሺܿ			݋ݐ	ݐ݆ܾܿ݁ݑݏ ൑ 0	 													for		i ൌ 1,⋯ ,݉௖ (4.2)
ݔ																																																											 ൌ ሼݔଵ, ,ଶݔ	 ⋯,ଷݔ	 , ݔ ,௡ሽݔ ∈ ௡ (4.3)ܫ
																																																										1 ൑ ݔ ൑ ௨ (4.4)ݔ

			

717

where, the objective function ݂ሺݔሻ is ݂: ௡ܫ → ݊ ,is integer index design variables ݔ ,ܴ
is the number of members which compose the structure, ݔ௨ is the upper bound of
variables. In this paper, this discrete structural optimization problem with integer index
variables and nonlinear constraints expressed in Eq. 4 will be solved by Near-Up
Search algorithm which will be very effective technique due to the problem’s unique
formulation using integer index variables.

3. NEAR-UP SEARCH

Direct search methods have been known since at least the 1950s. However, by the

early 1970s, these methods were largely dismissed by the mathematical optimization
community and disappeared from most of its literature for the lack of theoretical
background(Tamara etc. 2003).

But the simplicity of direct search method can be a powerful character to overcome
the complexity of structural optimization. So, in this paper, a new direct search
algorithm, Near-Up Search, is proposed for solving the discrete optimization problem
with nonlinear constraints and integer index variables. Near-Up Search is a search
algorithm combines ‘Near Points Search’ module and ‘Upward Direction Search’
module.

3.1 Near Points Search Module
Near Points Search is a process searching the neighbor points from the current

design points. ‘The near points’ are defined as the neighbor points which can be
obtained by increasing or decreasing the value of one or more components of the
current point by only 1. By the characteristic of the integer index variables, changing the
value of a component in a variable means changing the index of sectional area of a
member in sizing optimization. The near points are illustrated in Fig. 1.

a. One dimension b. Two dimension c. Three dimension
Fig. 1 Spacial dimensions and the near points

A near point, ሺݔሻ௡௘௔௥, can be obtained by Eq. 5.2 from the current point, ሺݔሻ௞ିଵ.

																																																ሺݔሻ௞ିଵ ∈ ௡ (5.1)ܫ
																																																ሺݔሻ௡௘௔௥ ൌ ሺݔሻ௞ିଵ ൅ ௝݀

௡௘௔௥ (5.2)
 ௝݀

௡௘௔௥ ∈ ௡௘௔௥ and ௝݀ܦ
௡௘௔௥ ∈ ௡ (5.3)ܫ

718

௡௘௔௥ܦ									 ൌ ൛ ௝݀
௡௘௔௥ൟ൛ ௝݀

௡௘௔௥ห ௝݀
௡௘௔௥	݅ݏ	݉݋݀݊ܽݎ	ݎ݋ݐܿ݁ݒ	݀݁ݏ݋݌݉݋ܿ	݂݋ െ 1, 0, 1. ൟ (5.4)

Where, ௝݀

௡௘௔௥ called ‘Near-vector’ is a direction vector to find a neighbor point, ܦ௡௘௔௥
is a set of Near-vector. The vector, ௝݀

௡௘௔௥ , can be created easily by using MATLAB
function, such as ‘fix(rand(1,n)*3)-1’, but it requires special care in handling the Near-
vector because the near points should be in the design space between the upper and
lower bound.

After a near point is created, the two points ሺݔሻ௡௘௔௥ and ሺݔሻ௞ିଵ may be compared
with the function values as follows: ሺݔሻ௡௘௔௥ ≺ ሺݔሻ௞ିଵ if (݂ሺሺݔሻ௡௘௔௥ሻ ൏ ݂ሺሺݔሻ௞ିଵሻ and
ܿ௜ሺሺݔሻ௡௘௔௥ሻ ൑ ሻ௡௘௔௥ݔThat is, ሺ .(݅	݈݈ܽ	ݎ݋݂			0 is “better” than ሺݔሻ௞ିଵ because it yields a
lower objective function value and satisfies all constraints. If the better point is found
the current point is updated as ሺ࢞ሻ࢑ ൌ ሺ࢞ሻ࢘ࢇࢋ࢔ , and the best point is also changed,
ሺݔሻ௕௘௦௧ ൌ ሺݔሻ௞ . If not, then try another Near-vector, ௝݀

௡௘௔௥ , and another near point
ሺݔሻ௡௘௔௥, to compare with the current point. The pseudo-code for the Near Points Search
process is shown in Table. 1.

Table. 1 Pseudo-code for the Near Points Search

For nearID ൌ 1, ݊௡௘௔௥
ሺݔሻ௡௘௔௥ ൌ ሺݔሻ௞ିଵ ൅ ௝݀

௡௘௔௥
If (݂ሺሺݔሻ௡௘௔௥ሻ ൏ ݂ሺሺݔሻ௞ିଵሻ and ܿ௜ሺሺݔሻ௡௘௔௥ሻ ൑ (݅	݈݈ܽ	ݎ݋݂			0

While ܿ௜ሺሺݔሻ௡௘௔௥ሻ ൑ ݅	݈݈ܽ	ݎ݋݂			0
ሺ࢞ሻ࢑ ൌ ሺ࢞ሻ࢘ࢇࢋ࢔
ሺݔሻ௡௘௔௥ ൌ ሺݔሻ௞ିଵ ൅ ௝݀

௡௘௔௥
End
If (ሺݔሻ௕௘௦௧ ൌ 0 or ݂ሺሺݔሻ௞ሻ ൏ ݂ሺሺݔሻ௕௘௦௧ሻ

ሺݔሻ௕௘௦௧ ൌ ሺݔሻ௞
End
Exit For loop

Else if (nearID ൌ ݊௡௘௔௥)
ሺݔሻ௞ ൌ ሺݔሻ௞ିଵ

End
End

Where, ݊௡௘௔௥ is the maximum number of iteration, nearID is an index of iteration in

Near Points Search

3.2 Upward Direction Search Module
Upward Direction Search is a process searching for the point which satisfying all

constraints from the current point. This process is performed when the current point is
infeasible or the Near Point Search can’t find the better point.

In structural optimization, if the bigger sectional areas are used, the possibility for
satisfying the stress and strain constraints is increased. So the bigger value of design
variables has more possibility to satisfy the constraints. That’s the reason why in
Upward Direction Search process the design variables are slowly increased by using
Eq. 6 to find feasible points.

719

																																																ሺݔሻ௞ିଵ ∈ ௡ (6.1)ܫ
																																																ሺݔሻ௨௣,଴ ൌ ሺݔሻ௞ିଵ (6.2)
																																																ሺݔሻ௨௣,௝ ൌ ሺݔሻ௨௣,௝ିଵ ൅ ௝݀

௨௣ (6.3)

 ௝݀
௨௣ ∈ ௨௣ and ௝݀ܦ

௨௣ ∈ ௡ (6.4)ܫ

௨௣ܦ																										 ൌ ൛ ௝݀
௨௣ห ௝݀

௨௣	݅ݏ	݉݋݀݊ܽݎ	ݎ݋ݐܿ݁ݒ	݀݁ݏ݋݌݉݋ܿ	݂݋	0	ݎ݋	1. ൟ (6.5)

Where, ௝݀

௨௣ called ‘Up-vector’ is a direction vector to find a feasible point and the

vector increase the value of variables. The vector, ௝݀
௨௣, can be created easily using

MATLAB function, such as ‘fix(rand(1,n)*2)’, but it also requires special care in handling
Up-vector that the new points, ሺݔሻ௨௣,௝ , should be in the design space between the
upper and lower bound.

This process will be terminated when a new points, ሺݔሻ௨௣,௝ is found which satisfy all
constraints(ܿ௜ሺሺݔሻ௡௘௔௥ሻ ൑ ݅	݈݈ܽ	ݎ݋݂			0). Then the current point is updated as ሺ࢞ሻ࢑ ൌ
ሺ࢞ሻ࢐,࢖࢛. The pseudo-code for the Upward Direction Search process is shown in Table. 2.

Table. 2 Pseudo-code for the Upward Direction Search

ሺݔሻ௨௣,଴ ൌ ሺݔሻ௞ିଵ
For ݆ ൌ 1, ݊௨௣

ሺݔሻ௨௣,௝ ൌ ሺݔሻ௨௣,௝ିଵ ൅ ௝݀
௨௣

If (ܿ௜ሺሺݔሻ௡௘௔௥ሻ ൑ (݅	݈݈ܽ	ݎ݋݂			0
ሺ࢞ሻ࢑ ൌ ሺ࢞ሻ࢐,࢖࢛

If (ሺݔሻ௕௘௦௧ ൌ 0)
ሺݔሻ௕௘௦௧ ൌ ሺݔሻ௞

End
Exit For loop

End
End
if (j ൌ ݊௨௣)

ሺݔሻ௞ ൌ ሺݔሻ௨௣,௝
End

This Upward Direction Search process can also be used to escape the local

optimum points when the Near Points Search can’t find a better point.

3.3 Near-Up Search Algorithm
Near-Up Search algorithm is illustrated in Fig. 2. Let ݇ serve as the index for each

iteration and let ሺݔሻ௞ ∈ ܴ௡ denote the design point of ݇th iteration, with ሺݔሻ଴ denoting
the initial guess. Generally ሺݔሻ଴ is infeasible point and Upward Direction Search is
performed by setting ‘nearID ൌ ݊௡௘௔௥’ before Near Points Search is carried out at 1st
iteration. Let ሺݔሻ௕௘௦௧ denote the best point found at the current iteration. ሺݔሻ௞ is updated
at each iteration and ሺݔሻ௕௘௦௧ is changed if a better point is found. The algorithm is

720

terminated when ݇ is bigger than the maximum number of iteration (݇ ൒ ݊௜௧௘௥) or the
function value reaches the target value(݂ሺሺݔሻ௞ሻ ൏ ௧݂௔௥௚௘௧).

4. VERIFICATION THE VALIDITY OF NEAR-UP SEARCH

To verify the validity of Near-Up Search algorithm, it is applied to the optimization of 10-

bar truss. The optimization results of Near-Up Search are compared with those of
ALGA(Augmented Lagrangian Genetic Algorithm) included in the MATLAB(R2012a)
program. The 6-node 10-bar truss model is shown in Fig. 3.

Fig. 3 10-bar truss

Fig. 2 Algorithm for the Near-Up Search

721

4.1 formulation of 10-bar truss design
In this problem the cross-section area for each 10 members in truss will be

optimized towards the minimization of the total weight of truss. The cross-sectional
areas can be used are:

																	Aሺ݅݊ଶሻ ൌ{1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09,

 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22,
 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5,
 13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5,
 30.0, 33.5} (7)

Let ݔ௜ means the index variable for the area of the ݅th member in the truss and it

would be an integer between 1 and 42 because the number of available area in the
area set in Eq. 7 is 42.

																																																					1 ൑ ௜ݔ ൑ ௜ݔ ,42 ∈ (8) ܫ

In this definition, if ݔହ ൌ 10 means that the area of 5th member of the truss is

3.09ሺ݅݊ଶሻ. The design variable ݔ is a vector that has 10 components because the truss
is composed of 10 members.

Using this design variable ݔ, the formulation of 10-bar truss design problem is as
follows.

																																				minimize	 		݂ሺݔሻ ൌ ∑ ௜ݒߩ

ଵ଴
௜ୀଵ 																																															 (9.1)

௝݃			݋ݐ	ݐ݆ܾܿ݁ݑݏ
ఙ ൑ 0	 													for		j ൌ 1,⋯ ,݉ఙ (9.2)

																																																																		݃௞
ఋ ൑ 0	 													for		k ൌ 1,⋯ ,݉ఋ (9.3)

ݔ																																																											 ൌ ሼݔଵ, ,ଶݔ	 ⋯,ଷݔ	 , ݔ	 ,ଵ଴ሽݔ ∈ ଵ଴ (9.4)ܫ
																																																										1 ൑ ௜ݔ ൑ 42 for		i ൌ 1,⋯ ,10 (9.5)

where, the density ߩ is the weight of the unit volume, ݒ௜ is the volume of the ݅th

member, ݃௝
ఙ represents the stress constraints, ݃௞

ఋ represents the displacement
constraints. The density is ߩ ൌ 0.1݈ܾ/݅݊ଷ, and the Young’s modulus ܧ ൌ The .݅ݏ10000݇
allowable stress for each member is േ25ksi for both tension and compression. The
allowable displacement on the nodes is േ2in, in the y direction.

The best result of 10-bar truss design found in Lee (2008) is shown in Table 3.

Table. 3 Solution of 10-bar truss design
Member 1 2 3 4 5 6 7 8 9 10

Area of Memberሺ݅݊ଶሻ 33.5 1.62 22.9 14.2 1.62 1.62 7.97 22.9 22.0 1.62

Integer index variable 42 1 39 32 1 1 28 39 38 1

Total weight of truss 5490.7 lb

722

4.2 Results of design by ALGA
The value of parameters used in running ALGA in MATLAB : population size=50,

maximum generations=500, stalling generation limit=100. The value of other
parameters like the probabilities of crossover and mutation are using the default values
assigned in MATLAB.

If the initial population is generated randomly in design space, ALGA would be
terminated in 1st generation because ALGA couldn’t find a feasible individual. So I
assigned the maximum value of the variables to the initial population.

In 100 try, ALGA obtains nearly as good as the cross sections and total weight as
shown in Table. 3, but can’t find the exact same or better solution as that in Table. 3.
The total weight of truss of best solution found by ALGA is 5503.93 lb. The solution was
found in 229th generation after the functions were evaluated 1,171,536 times and the
elapsed time is 940.47 seconds. The average weight of truss in 100 try was 5863.10 lb
and the average elapsed time is 808.45 seconds. Almost every time ALGA was
terminated by the stalling generation limit. The normal convergence history of ALGA is
illustrated in Fig. 4.

4.3 Results of design by Near-Up Search
In the Near-Up Search algorithm, the initial values of design variables can be

created randomly thanks to the Upward Direction Search module. The termination
criteria is maximum number of iteration, ݊௜௧௘௥ ൌ 1000, and this algorithm was performed
100 times to evaluate the average performance.

Every time in 100 try, Near-Up Search algorithm find the exact same solution shown
in Table. 3. The average number of iteration to find the solution is 160 and the average
elapsed time is 40.52 seconds. This results can be compared with those of ALGA and
we can see that Near-Up Search is more effective than ALGA in this type of sizing
optimization. The normal convergence history of Near-Up Search is illustrated in Fig. 5.

Fig. 5 Convergence history of Near-Up Search Fig. 4 Convergence history of ALGA

723

5. CONCLUSIONS

This study proposes a new direct search algorithm, Near-Up Search, is proposed for

solving the discrete optimization problem with nonlinear constraints. The algorithm
combines ‘Near Points Search’ module and ‘Upward Direction Search’ module, and it
uses the integer index variables which were newly defined in this paper. The Near
Points Search module is used for searching the adjacent design points to find a better
solution. The Upward Direction Search is used to search for a feasible point from an
infeasible current point and to escape the local optimum points. The combinational
operation of the two modules, Near-Up Search algorithm can find the feasible and near
optimal solution without gradient information and doesn’t have to use the penalty
function like augmented Lagrangian.

The proposed method is illustrated and tested by the minimum weight structural
optimization of 10-bar truss. The results of the design show that the rate of
convergence and the accuracy of solution of the proposed algorithm are much better
than those of ALGA. It is obvious that, for the discrete structural optimization with
nonlinear constraints, Near-Up Search algorithm is a very useful method.

REFERENCES

Hwang, S., Cho, H., Han, S. (2001), Discrete Optimal Design of Truss Structures Using

Genetic Algorithm, J. of the Computational Structural Engineering Institute of Korea,
Vol. 14(2), 97–106

Kolda, T. G., Lewis, R. M., Torczon, V. (2003), Optimization by Direct Search: New
Perspectives on Some Classical and Modern Methods. SIAM review, Vol. 45(3),
385–482

Lee, H. (2008), Direction Vector for Efficient Structural Optimization with Genetic
Algorithm, J. of the Korean Association for Spatial Structures, Vol. 8(3), 75-82

The MathWorks (2012), Genetic Algorithm and Direct Search Toolbox 2 : User’s Guide,
MATLAB ver. R2012a

724

