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ABSTRACT 
 

    Old steel bridges were made of structural elements composed by riveted angles and 
sheets, placed side by side and without gaps among their surfaces. After decades of 
service such composed members exhibit dangerous distortions due to the rust grown 
inside the interstices and to its swelling over time. 
Aim of this paper is to propose a model suitable to study the residual bearing capacity 
of riveted steel ties, deformed by the swelling of interstitial rust. 
 
Keywords: old steel bridges; rust swelling; residual bearing capacity 
 
 
1. INTRODUCTION 
       

The structural reliability of old bridges still in service is a wide and common problem 
in the whole world. A typical case is that of steel bridges built at the beginning of the 
twentieth century, characterized by less resistant materials, built with very different 
technologies with respects to the current ones and designed for lower traffic loads 
(Malerba 2013). 

Typical of that era was the use of structural elements composed by riveting 
elementary steel shapes (angles and sheets) placed side by side and without gaps 
among their surfaces. After decades of service, we are seeing dangerous distortions of 
such composed members, due to rust grown inside the interstices and to the swelling of 
this rust layer over time (Fig. 1). 

Aim of this paper is to create a model which, on the basis of surveying data, should 
be able to describe the interaction between the rust swelling of a composite profile and 
the corresponding reduction in its bearing capacity. 
 
 
2. PROBLEM DEFINITION 
 

   We consider a tied bar, composed by two rectangular rods having section  b h and 
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jointed by rivets placed at a given pitch L  (Fig. 2). The rods are faced each other at 
contact, without gaps. Actually, small surface irregularities make the two rods not 
perfectly adherent and allow water and humidity to penetrate through preferential paths. 
This predisposition may be fostered by localized grinding, caused by the rivets 
clenching.  
 
 
 

Fig. 1 Truss members deformed by rust swelling 
 
 
 

Inside these small voids, interstitial layers of iron oxides start to form. As known, 
rust has a high expansion coefficient. It follows that once the phenomenon has started, 
it continues to grow, increasing the thickness of the layer of rust and deforming the rods. 
The rods open wide, constrained only by the rivets and assume permanent 
deformations. Gradually, the rods get to work in completely different way with respect to 
initial hypotheses, which consider them straight and simply stretched, and as a result 
they turn out to be overstressed with respect to the design assumptions. 

This paper studies the residual bearing capacity of riveted steel ties deformed by 
the swelling of interstitial rust. 
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3. TIE MODELLING 
 
     Recent surveys on steel bridges built at the beginning of ‘900, showed how, along 
the segments between the rivets, such swelling phenomenon gives rise to regular and 
repeated lenticular diverging shapes, with opening of some millimeters at the middle. 
This suggested a simple model based on the following hypotheses 
 

1. steel has linear elastic/perfectly plastic behaviour;  
2. rivets elongation and section reduction, due to the corrosion, are ignored; 
3. the tie is stretched by a tension force only; 
4. the rods open wide because of the interstitial pressure distribution exerted by the 

rust lens grown between them; 
5. the pressure profile is assumed affine to the deformed shape; 
6. in the following we consider two deformed shapes: the first one (shape function A, 

Fig. 2(b)) according to a cosinusoidal function and the other (shape function B, 
Fig. 2(c)) according to a sinusoidal function. The first shape is more similar to the 
actual deformed profiles, with a maximum at the middle and no rotations at the 
riveted end sections. The other shape would take into account that the riveted 
sections may be weaker with respect to the current rod section and so we simply 
assume that the ends are free to rotate. 

 
The model development starts with a short recall of the elastic behaviour of both 

cosinusoidal and sinusoidal shapes. Then, due to a load path which gradually 
increases the interstitial pressure, the elastic-plastic response is studied. For growing 
values of the axial force, the results give the evolution of the relative displacement at 
the middle of the tie segment and are summarized through (maximum 
pressure)/(relative displacement) diagrams. 
 
 
4. ELASTIC BEHAVIOUR 
      

     Firstly we consider shape function A. The tie segment, having section  2 b h 
 
and 

length L , is assumed as clamped at the end riveted sections and loaded by a force per 
unit of length ( )f x p b   given  by the relationship (Fig. 2(b)): 

 

 

  2
1 cos

2

f x
f x

L

           
                                              (1) 

 

where f  is the maximum force intensity at the middle. 
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The force resultant F over the length L  is: 
 

 
0

2
1 cos

2 2

L f x f L
F dx

L

            



 (2) 

 
 

 
Fig. 2 Tied bar composed by two rectangular rods, riveted at a pitch L 

(a) undeformed configuration; (b) deformed shape A (cosinusoidal) (c) deformed shape B (sinusoidal) 
 
 
 

The elastic equilibrium equation is 
 

 
 ( )IV

IV

dv x
E I f x

dx
                                                                     (3)  

                           

Such an equation, integrated by taking into account the condition of clamped ends, 
leads to the following force - displacement relationship 

 

 
4

4 3 2
4 4

1 1 2 1 1 1
cos

48 32 24 48 32

f L x
v x

E I L

  
 

                      
                     (4) 
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The corresponding bending moments at the ends A and B and at the middle C, are 
listed in Table 1.

  
 
Table 1 Bending moments at the ends and at the middle of the tie segment 

 Section Bending Moments 

End sections 0;x x L 
 

2 2 2
2

2

3

24 18.41

   
       

Ap B p

f L f L
M M f L


 

 

Middle section 2x L  
2 2 2

2
2

6

48 29.85

   
         

C p

f L f L
M f L


 

 

 
 
 

According to shape function B (Fig 2(c)), the tie segment is loaded by the sinusoidal 
force per unit of length 
 

  sin
x

f x f
L

     
 

                                                                   (5) 

 

The force - displacement relationship is 

 

 

 
2

sin
                

f L x
v x

E I L




                                                          (6) 

 

And the corresponding bending moments at the middle is 

 

2
    
 

L
M f


                                                                        (7) 

 
 
5. ELASTOPLASTIC BEHAVIOUR 
 
     We refer to the usual hypotheses of the plastic beam theory (Massonnet, 1962, Moy, 
1996) and consider the case of shape function A. The plastic axial force and the plastic 

bending moment of the rectangular section  b h  are respectively 

 

p yN b h         (  0M  )                   21

4p yM b h           ( 0N  )                        (8) 
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For any N  and M , the frontier of the plastic domain is given by the equation 
 

 

2

1
p p

M N

M N

 
   

 
                                                                      (9) 

 
or, by putting pN N and pM M , by the equation: 

 
21                                                                             (10) 

 

Table 2 list the coordinates of some points of the frontier, which will be considered in 
the following 
 
 
Table 2 Coordinates of the frontier of the plasticization domain 

pN N  0 4  1 4  2 4  3 4  4 4  

pM M  16 16  15 16  12 16  7 16  0 16  

 

 
Fig. 3 Simply supported beam subjected to cosinusoidal pressure profile 

and to plastic moment applied at the ends 
 

 
In a loading process starting from zero, we increase the load intensity f . When f  

reaches the value 
2 2

2
2 2

1 24

4 3

   
       

I y
A py

b h
f M L

L

  


                                             (11) 

 
two plastic hinges at ends A and B of the beam form. The corresponding deflection and 
the bending moment at the middle point C are respectively 

 

 
2 4

2

2 2

1 48
v

2 4 32 3

              
C y

L L
x b h

E I

 
 

                                       (12) 
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 
2

2

2

1 6

2 4 2 3

           C

I
y

L
M x b h f

 


                                             (13) 

 

The bending moment still available for the middle section is 
 

 
2

2

2

1 6
1

4 2 3C

I I
p C yM M M b h

 
         

   

 


                                    (14) 

 

After the formation of the two plastic hinges at the ends, a further loading increase  
gives rise to a redistribution of the bending moment along the beam. In this phase the 
load deflection path can be derived with reference to a simply supported beam, 
subjected to the end constant moments A p B pM M and loaded by the same 

cosinusoidal profile (Fig. 3). Such a solution allows us to state a relationship between 
the increments of the load intensity and the corresponding increments of the 
displacements v and of the bending moments CM  

 

 
4 4 2 2 4

3 2 3
4 2 2 4

2 3
v cos

48 32 24 16 48 32

f x L x L L L
x x x L x

E I L

                             

 
   

   (15) 

 

2
2

2

4

16CM f L
 

      




                                                            (16) 

 

The superposition of such increments at the end point Y of the elastic solution, 
allows to obtain the total displacement relationship (Fig. 4). 

By equating Eq. (14) to Eq. (16)  
 

C

I
CM M                                                                         (17) 

 

we derive the load increment which leads to form a plastic hinge in sectionC  

 

   
2 4

2 2 2

1 16

4 2 3 4

  
    

   
y

y

b h f
f

L

 
 

                                       (18) 

 

The corresponding displacement increment is 
 

   
2 4 2

2

2 2

1 5 12 48
v

4 48 3 4

   
       

    C y

L
b h f

E I

  
 

                                   (19) 
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Fig. 4 Superposition of the  plastic phase to the elastic one 

 

 

The most relevant results for the case of shape function B are 
 

2

2
         
   C

L L
M x q


                                                    (20) 

2
21

4
       
 

yyf b h f
L

                                                        (21) 

2
21 1

v
2 4

                
C y

L L
x b h f

E I



                                           (22) 

 
 
6. AN APPLICATION AND F.E. CORROBORATION 
      
     We consider a tied bar, composed by two rectangular rods having section 
(70x10)mm2 and jointed by rivets placed every L= 350 mm. A yielding stress 

2240y N mm  has been assumed. Five levels of axial force are considered: 

 0 4 1 4 2 4 3 4 4 4     . For each level and for both shape functions A and B, the 

corresponding load displacement relationships have been computed. Results are 
shown in Figs. 5, 6, 7 and 8. Each graph is related to a value of pN N .  The 

abscissas give the displacements vC , corresponding to half opening of the gap 

between the rods. The ordinates quote the corresponding loading level. 
Such results were corroborated by a first set of simple FEM analyses (FEM1). The 

four FEM1 load displacement curves have been reported in the same graphs (line c) 
and confirm the analytical results. Afterward a more refined FEM solution (FEM2) took 
into account the presence of the (ø=16mm) holes where the rods are riveted. The 
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presence of the holes makes the end sections weaker and more flexible with respect to 
the current rod characteristics. Such a reduction was modelled by grading the thickness 
of the elements in their end zones. Also these results were reported in the 

aforementioned graph (line d). As one can see, for  0 4 1 4 2 4   FEM2 solutions 

result closer to those provided adopting shape function A, while for  3 4 the curve is 

in between the two extreme solutions. 
A synthesis of the results is given in Fig. 10. The abscissas give the displacements 

vC , while the ordinates quote the value of   corresponding to first plasticization. For the 

analytical solutions such a point correspond to the knees of the curves. For FEM1 and  
FEM2 solutions the point corresponding to a residual plastic strain of 0,2% at an edge 
of the section was chosen. According to this reference, FEM2 solutions result more 
restrictive with respect to the analytical ones. 

As concern the structural capacity of the tie, from the exam of Figs. 5 ÷ 8 and 10 we 
deduce the following conclusions: 

 the yielding of the sections is accompanied by an evident gap between the rods.  
 an increase of the axial force applied to the tie gives rise to a corresponding 

decrease of the yielding pressure and to lower values of the gaps at yielding.  
 the presence of rust swelling reduces the bearing capacity of the tie and such a 

reduction increases with the intensity of the axial force. 
 
 

 
Fig. 5 Pressure displacement relationships for 0 4  . Solutions for: (a) cosinusoidal pressure profile; 

(b) sinusoidal pressure profiles; (c) F.E. solution without section reduction due to the rivet hole; (d) F.E. 
solution with section reduction due to rivet hole 
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Fig. 6 Pressure displacement relationships for  1 4  . Solutions for: (a) cosinusoidal pressure profile; 

(b) sinusoidal pressure profiles; (c) F.E. solution without section reduction due to the rivet hole; (d) F.E. 
solution with section reduction due to rivet hole 

 
 

 
 

Fig. 7 Pressure displacement relationships for 2 4  . Solutions for: (a) cosinusoidal pressure profile; 

(b) sinusoidal pressure profiles; (c) F.E. solution without section reduction due to the rivet hole; (d) F.E. 
solution with section reduction due to rivet hole 
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Fig. 8 Pressure displacement relationships for 3 4  . Solutions for: (a) cosinusoidal pressure profile; 

(b) sinusoidal pressure profiles; (c) F.E. solution without section reduction due to the rivet hole; (d) F.E. 
solution with section reduction due to rivet hole 

 
 
 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 9 ABAQUS-FEM2 comparison analyses. Axial force (v = 1/4). Mesh composed of  21 x 176 nodes 
and 3500 elements. (a) mesh and loads distributions; (b) deformed shape and Von Mises stresses at 

yielding (p = 0.82 MPa ); (c) deformed shape for p = 0.96 MPa 
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Fig. 10 Relationships between axial force and maximum displacement for: (a) cosinusoidal pressure 
profile; (b) F.E. solution without section reduction due to the rivets hole; (c) F.E. solution with section 

reduction due to rivets hole 
 
 
 
 
7. CONCLUSIONS 

 
 

     Structural elements composed by riveted angles and sheets exhibit over time 
dangerous distortions, provoked by the rust grown inside the interstices and to its 
swelling over time. 

In this paper a model suitable to study the residual bearing capacity of riveted steel 
ties deformed by the swelling due to the rust, has been proposed. 
The results are coherent and agree with those of FEM analyses, carried out for the 
sake of corroboration. 

Yielding of the sections is accompanied by an evident gap between the rods. The 
increase of the axial force applied to the tie gives rise to a corresponding decrease of 
the yielding pressure and to lower values of the gaps at yielding.  In other words, the 
presence of rust swelling reduces the bearing capacity of the tie and such a reduction 
increases with the intensity of the axial force. 

We consider such results promising and open to improvements both from the 
methodological and the applicative points of view in further phases of the research. 
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APPENDIX 1 LIST OF SYMBOLS 
 

b  Width of the rod 

h  Thickness of the rod  

L  Pitch between the rivets 

 f x  Interstitial pressure function 

f  Maximum interstitial pressure  

E Modulus of elasticity 
I  Moment of inertia of the rod

y  Steel yielding stress 

v  Displacement function 

N  Axial force 

pN
 

Ultimate (plastic) axial force 

M  Bending moment 

pM  Ultimate (plastic) bending moment 

,   Numerical coefficients 

pN N
 

Ratio between the axial force and its ultimate value 

pM M Ratio between the bending moment and its ultimate value 
I

yf Load intensity when the first plastic hinge forms 
I

yf Increment of the load intensity at the formation of the plastic hinge in C. 

C

IM Bending moment in C when the first plastic hinges form in A and B.  

C

IM Bending moment still available at the middle when the first plastic hinges form in A and B.

 v x  Displacement increments in the plastic phase.  
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