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ABSTRACT

This paper presents a convolution quadrature time-domain boundary element
method (CQ-BEM) in fluid-saturated porous mediagoverned by Biot's theory.The
classical time-domain BEM (TD-BEM) has been applied to various wave
analyses.However, it cannot be used for wave propagation in fluid-saturated porous
media, because of the following reasons: 1) no time-domain fundamental solutions are
known for the problem, 2) the method sometimes suffers from numerical instability. To
overcome these difficulties, a convolution quadrature method (CQM) developed by
Lubich is applied to the TD-BEM. The scattering problems of an incident plane wave by
a cavity in poroelastic media are solved to validate proposed method.

1. INTRODUCTION

The dynamic analysis for the porous solid has been studied in soil mechanics and
rock engineering fields. In particular, the dynamic analysis of ground liquefaction arose
from earthquakes requires the consideration of the fluid-solid interaction.

Biot(1956) proposed a dynamic poroelasticity formulation for the fluid saturated
porous media with the fluid-solid interaction.The formulation is based onTerzaghi's
consolidation theory, the total and effective stress principles, and effective porosity.
According to Biot’s theory, two differentlongitudinal waves and one transvers wave exist
in poroelastic solids, and all the waves have the dispersion property.

Wave propagation in fluid-saturated porous media has been analyzed by the finite
element method (FEM).However,the conventional time-domain boundary element
method (TD-BEM), which is suitable for wave analysis, cannot be applied because no
time-domain fundamental solutions are known for the problem. In addition,the method
sometimes suffers from numerical instability when small time increments are used.

Recently, a convolution quadrature boundary element method (CQ-BEM) has been
proposedby several researchers(Schanzet al.1997 and Saitohet al. 2009). In the
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formulation of the CQ-BEM, the convolution integrals of the time-domain boundary
integral equations are numerically approximated using a convolution quadrature
method (CQM). The CQ-BEM requires Laplace-domain fundamental solutions.
Therefore, the use of the CQ-BEM is particularly helpful for poroelastic wave scattering
problems where no time-domain fundamental solutions exist.

In this paper, a CQ-BEM formulation for 3-D wave propagation in fluid-saturated
porous media is presented. Numerical examplesare shown to validate the proposed
method.

2. BIOT'S THEORY

The small and large indices used throughout this paper, such as ( );and( ),
range from 1 to 3 and from 1 to 4, respectively, unless otherwise stated.Additionally,
summation over repeated subscripts is implied throughout thispaper.

solid skeleton
solid particle

AN T2

i LTS '1
poroelastic solid ™~ » s Yo
pore fluid

Fig. 1 A schematic of the model of poroelastic solid.

2.1 Compatibility and constitutive equations

Let us consider 3-D fluid-saturated porous media. The formulation ofporoelasticity is
based on Biot's theory. (Biot 1956) In this study, we assume thatporoelastic media
consist of solid skeletons, solid particles, and pore fluids, asshown inFig. 1. Assuming
that the displacements for a solid skeleton and forpore fluid can be represented as
u = {uy,u,,u3}’ and U = {U,,U,, U3}" , respectively.The compatibilityand constitutive
equations are defined as follows:

1
eiy =5 (U + ), €= e = U 1)

o;j = 2u€;j + (de — ap)dyj, p =—aMe + M{ (2)
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whereg;; and e;;are the total stress and strain for a solid skeleton,

respectively. Thesuperscript ()T denotes the transpose of a vector. In addition, pis the
fluid pressure, ¢ is the variation of the fluid volume per unit referencevolume, M is Biot’'s
material con-stant, « is Biot's effective stress coefficient,and A and u are Lamé
constants. The vari-able §;; is the Kronecker deltaand e is the dilatation strain. The
variable () ; denotes the partial derivativewith respect to x;.

2.2 Compatibility and constitutive equations

Now, we consider the problem of 3-D poroelastic wave scattering by theobject D in
an exterior poroelastic medium D, as shown in Fig. 2. Whenthe incident wave g™ hits
the boundary surface S of the object D, scatteredwaves are generated by the interac-
tion between the object D and the incidentwaveq'™, as shown in Fig.2. Assuming the
zero initial conditions, the equationsof motion for the solid and fluid can be written as
follows:

0ijj + Pb; = pl; + prw; (3)

Pr_

5 bw; 4)

Di+prci = —prily —

whereb; and c; are the body forces for the solid and fluid, respectively. The density of a
poroelastic medium p is calculated by(1 — g)ps + Bps, Where § is the porosity, and p

and pr are the densities of a solid skeleton and pore fluid, respectively. In addition, )
denotes the partial derivative with respect to the time t.The vectorw = {w,, w,, w3}’
denotes the relative displacement between the solid skeleton and the pore fluid,which
has the relation with w; = —(k/n)p;where k is the permeability and n is the viscosity
coefficient. The dissipation parameter b is defined by b = n/k.

e x<
S scattered wave
n

bt
poroelastic solid

incident wave

Fig. 2 Wave scattering in a poroelastic medium.
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2.3 Wave propagation in poroelastic media

According to Biot’s theory, two longitudinalwaves (L, and L, waves) and one
transvers wave (T wave) exist in 3-D poroelastic solids. Thisdiscrepancy is the most
significant feature of wave propagation in 3-D fluid-saturatedporous media, and these
characteristics can be easily confirmed analytically in the frequency domain.

Considering a planewave with wave number k; that is propagating to the x; direction
as follows:

— {u ,p}T {AT ikgxq Belkfxl} (5)

whereA = {A,,4,,A3;}" and B are the amplitudes of the solid displacementand fluid
pressure, respectively. The vector g appearing in Eqg. (5) is definedas a generalized
displacement consisting of a solid displacement u and fluidpressure p. Eqgs.(3)and(4)
with no body force (i.e.,b; = c; = 0) yields the following governing equations for
generalized displacements,

Ly;q=0 (6)

whereL,;are the differential operators given by

0 b W25, { _a } 1
[Lij] {Li4}l axk kll] a (U P ij (Zaxi (7)
= T = T
Iy {L4j} Lys {d 0 } 1 1J
0x; w2 M

where Cy;;; is the elastic constant defined by Cy;j = A6y;6;; + u(8x 65 + 6x;6,). The

variables Aand wdenote the Laplacian and angular frequency,respectively. In addition,
the parameters i, &, and p are given by

2 ama-, pop-L, mt ®
m m

Egs.(5) and (6) yields different three wave numberskr, k;, ,and k,,. The transverse
wave numberkis

5
k% == w? 9
"= )

andtwo longitudinal wavesk, and k,, are obtained as follows:
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k? 1 _ 2 :
{k{} =~ l(kfm +keE,, + k3) F{(k2,, + k2, +k3)" — 4k? k2, } (10)
2

wherek, , k,,, and k, are given by Fukui et al. (1996) and Yamamoto et al.(2002) as

~ ~

p m
Ko = 1o zp @ Koo = 370" m K§ = 50" (11)

Egs. (9)and(10)imply that three varieties of waves exist inporoelastic solids, and k,,
and k,,correspond to the fast longitudinal wave, and the latter one.Here, we define
wave velocitiesfor these three kinds of wave numbers as ¢, = w/k.(k =Ly,
L,,0orT).Therefore, in this paper, we referto the wave propagating with the velocity ¢,
as the "L, wave” ,c,, asthe "L, wave"and cras " T wave”.In addition, in order to later use,
the wave velocities corresponding to the wave numberk,, , k;,, and k, is also defined
as ¢, = w/k, (i = Lig, Lyp,0rQ).

3. CQ-BEM FOR 3-D POROELASTODYNAMICS

3.1 Time-domain boundary integral equations
Consideringan elastic wave scattering problem in an infinite poroelastic medium as
shown in Fig. 2, the time-domain boundary integral equations are derived as follows:

Cy(x)q;(x) = qi"(x, t)
+ f Uy (5,9, 1) * v, (v, )dS, — f Wy, (x,y,6) * q,(y, £)dS, (12)
S S

wheregj"(x, t) shows incident wave, v;(y,t) is generalized traction, which isgiven by
v ={t",p,}",U;(x,y,t) and W;;(x,y,t) are the time-domain fundamental solutionsand
its double-layer kernels for 3-D poroelastodynamics, respectively. In addition,C;; is the
free term (Brebbia 1984) which depends on the shape of boundary at observation
ointx.
P Normally, the time-domain boundary integral equations (12) are discretizedby using
the appropriate interpolation functions for the unknown values andsolved by a time-
stepping algorithm. However, the boundary integral equationscannot be solved using
such a scheme because there areno explicit time-domain fundamental solutions for 3-D
poroelastic wave propagation. To overcome this difficulty, the CQM is applied to
Eq.(12).

3.2 Convolution quadrature method

The convolution quadrature method (CQM), firstproposed by Lubich (1988),
approximates the convolution f * g(t) by a discrete convolution using thelLaplace
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transform of the time-dependent function f(z — t). In general, the convolution integralis
approximated by CQM as follows:

frgmhe) = Y wn_;(A)GGAD, 1 =01,..,N (13)
7=0

wheret is divided into Nequal steps At and w;(4t)are the quadrature weights. The
guadrature weights are determined with the Laplace transform of the original time-
dependent function fand given as follows:

L-1

on(e0) =T Y 7 (1) (14
=0

where fis the Laplace transform of f and y({)is the quotient of the generating
polynomials of linear multistep method given by y({) = ¥ ,(1 — {)!/iusing backward
differential formulas (BDF) and ¢, is given by {; = pe?™/L |naddition, R is the radius of
a circle in the analyticity domain off. eis the error of the numerical calculation of
Eq.(14),given by R! =+eand the parameter Lis set asL =N to accelerate the
calculation of Eq.(14)by using FFT.

3.3 Discretization of BIEs using the CQM

If we discretize the boundary surface S into M boundary elements using apiecewise
constant approximation of the unknown generalized displacementg, and traction v, and
using the CQM for the convolutions of Eq.(12), theboundary integral equationscan be
discretized as follows:

€1y (), (x,n41) = g} G, )

+Z Z[A?, KV (kAD) — B E D). (15)

a=1k=

Here, A7}, (x) and Bj}.,(x) are influencefunctions defined by

R™M [ . _2miml
A} (x) =7 f Uy(x,y,s)dS,|e L (16)
1=0 ["Sa
R-m L-1_ -
Py _zmm
B} (x) = I w,(x,y, sl)dSyl e L a7)
1=0 -5
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whereU,,;(x,y,s)and W, (x,y, s)are the Laplace-domain fundamentals solutions and its
double-layer kernels, respectively. In addition, s; denotes the Laplace parameter given
by s, = y({)/At.

3.4 Laplace-domain fundamental solutions and double-layer kernels

As mentioned in the previous section, the time-domain BEM based on the CQM
requires the fundamental solutions and double-layer kernels in the Laplace-domain.
The Laplace-domain fundamental squtionsUU(x,y, s)with Laplace parameter sfor 3-D
poroelastic wave propagation satisfy the following equation:

Eljﬁlj(x: y,8) =—6x6(x—y) (18)

whered(x)shows the Dirac delta function. The differential operator ZU in EqQ.(18) is
Laplace-domain of L;; in Eq.(7) and given by

[ic..i_szﬁg..] {_di}]
P dx;, Y gy, Y 0x; 19)
" (o) Ly
0x; s?m M

Hormander's theoremis wuseful to derive the Laplace-domain fundamental
solutionsfrom EQ.(18). In fact, the Laplace-domain fundamentalsolutions can be
derived from Eqgs.(18) and (19) as follows:

e—STr

1

ﬁij(x»yrs) = m( -

2 2 - - 2 2 — —
-= 1 > ISLlo _2 SLz (6 517 _ e SL1T> _ SL10 _ZSL1 (e o — € SL2r>l (20)

ﬁ ( ) B 1 SS e—SL1T e—SLZT
WO S = ez —S2 | r T, (21)
ﬁ ( ) B 1 5‘5 e_SL1r e—SLZT
YOV S = anas? —s2 |y r (22)
1 2 j
R M SL —SLZT e—SL1T
U44(x’ Y S) = 4 SZ _20 I( Lip Lz - (5510 - 551) r . (23)

Here, ris given by r=|x—y| and the parameters, S, ,S.,.,S,S,,S,, and Sr
aredefined by S, = s/c,(ic = Lyo, L3¢, Q, Ly, L;,0rT), Where ¢, = w/k,.The parameter S,
in Egs.(21) and (22) implies the effect of solid-fluid interaction for 3-D
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poroelastodynamics. Egs.(21)and(22), which are thecoupling terms between solid and
fluid regions, approach to zero if S, — 0.

Next, we define the double-layer kerneIsVT/U(x,y,s), for 3-D poroelastodynamics
using the Laplace-domain fundamental solutions ﬁ,](x,y,s) . Defining the
generalizedtraction vas v; = Bj;q;acting on a plane with normal vector n;gives the
double-layer kerneIsVT/,](x, y, s)if the following equation is solved:

Wi (x,y,8) = B};ﬁjk(}’» x,s) = Elj;ﬁkj(x» Y, S). (24)

Here, the differential operator E}; derived from the Laplace transform of B, is given by

r[Ckilj (%lnk] {—an;} |

B, = 25
K {_P_fn.}T _ 19 (@)
m J s2mox, ©
Therefore, each component of the generalized tractionv = {t, t,, t3, p,}"is
t; = o;n; — apn;, pp = —Winy (26)

where t; and p,, showsthe traction relation for total stress and fluid pressure flux
respectively.

4. NUMERICAL EXAMPLES

In this section, we show numerical examples using theproposed CQ-BEM.In all
numerical examples, the boundary surface of anobject with radius a =1 was
discretizedinto 836 boundary elements usinga piecewise constant approximation. The
material parameters used in theanalyses are listed in Table 1.The accuracy parameter
eise = 1.0 x 10712,

Table. 1 Material parameters

u A M Pr
/( /( /( /Ps
+ + +
1/3 1/3 5/6 0.2 1
/3

4.1 Incident waves in the time-domain
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As mentioned in the section 0, two longitudinal waves and one transvers wave exist

in 3-D porous medium and these waves possess the dispersion property.Therefore, we
. . . T

assume that the time-domain incident wave q™ = {[u{”(x, t)]T,pm(x, t)} is a plane

fastlongitudinal wave ( L, wave)with the central period T,(=2n/w,) and
angularfrequency w, propagating in the x, direction and is calculated via the
inverseFourier transformF ~1of the original wavey (w) as

ul®(x,t) = 6, F " (w)] (27)

2 2
pin(x, £) = F-1 l_i kLlOkL ki, 2 -;2#1/)(0))] (28)
V() = uow?2(1 — el@™) ik 29)

2iw(w? — w?)

whereu,, is the displacement amplitude and is set as u, = 1. In addition, the coefficient

of Y(w) in EQ.(28) shows the amplitude ratio of fluid pressure to the solid displacement
for L; wave.

4.2 Accuracy of the proposed CQ-BEM

The scattering problem of an incident plane wave hitting an object Din aporoelastic
solid D, as shown in Fig.3, was solved by the proposed CQ-BEM to verify the
computational accuracy.In this problem, if the material parameters oftheD are the same
as thoseof the poroelastic solid D and the continuous boundary conditions on the
boundary S are imposed,the solutions of the boundary value problems are equivalent to

those for theincident wave q™
x)
A
’,.c—""' ="""",.‘.
- ~,
S,’I \\\ xZ
7 B,
N I .- ——— \
q" f oo "'~.f!i
incident wave  } T~ _ 7]
A e —— F;
\ J
\\ ,,r
D \\\ S Af2a,0,0)
S B(0,2a,0)
poroelastic solid T

Fig. 3Analysis model for verifying the accuracy of the proposed method.
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Fig. 4shows the time histories of the solid displacements u; and the fluid pressure
pat the points A and B in Fig. 3 obtained by using second-order BDF.Solutions using
two different time increments, A = 0.06 and 0.04, are plotted, and the analytical
solutions (incident wave) are also shown by the solid line for comparison. Here,
theparameters N and L are given by N = L = 256. Moreover, a =1,b = 10,and u, = 1

are considered.It can be observed that the results obtained by proposed method are in
good agreement with the exact solutions.
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Fig. 4The time histories of (a)u; and (b)p at the points A and Bin Fig. 3.

5. CONCLUSIONS

In this paper, the CQ-BEM was developed for 3-D wave propagation in fluid-
saturated porous media. In the proposed method, the convolution integrals in the time-
domain boundary integral equations are discretized using the CQM. The numerical
resultsobtained by the proposed method are good agreement with the exact solutions.

In the future,the fast multipolemethod (FMM) is applied to accelerate the proposed
method for more efficient calculations.
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