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ABSTRACT 
 

     This paper presents a novel Particle Difference scheme for solving dynamic crack 
propagation problems. The Particle Difference scheme directly discretizes the 
governing partial differential equations and yields a strong formulation. The scheme is 
based on nodal computation using the Taylor polynomial expanded by the Moving 
Least Squares method so that it no longer relies on the mesh or grid structure. 
Topology change due to crack propagation induced by a dynamic impact loading is 
easily modeled by involving very small modification of node arrangement. An efficient 
dynamic algorithm is selectively adapted for the Particle Difference scheme and the 
visibility criterion and dynamic energy release rate evaluation are combined with the 
scheme for crack propagation modeling. Numerical examples thoroughly verified the 
robustness and effectiveness of the scheme.  
 
 
1. INTRODUCTION 
 
     In numerical simulations for the dynamic crack propagation driven by an impact 
loading, there has been a cumbersome issue on geometrical modeling of topology 
change. For example, when using Finite Difference Method(FDM) or Finite Element 
Method(FEM), internal boundary like a crack ligament is generally fixed to grid or mesh 
structure and the evolution of the boundary increases complexity and difficulty in the 
management of numerical model. Grid modification or mesh reconstruction provokes 
considerable inconvenience in transient simulation whether it is partial or not. In order 
to circumvent this inconvenience, the XFEM(eXtended Finite Element Method; 
Menouillard, 2009) was applied to the simulation of dynamic crack propagation; 
however, numerical integration issue has apparently remains as a troublesome work to 
be resolved. On the other hand, the meshfree method like EFGM(Element Free 
Galerkin Method; Belytschko, 1994) that was developed to overcome mesh 
dependency has struggled with handling weak formulation in the topology change 
involving simulation despite the node-wise character of the approximation function.  
     The Particle Difference Method, which is built up with Taylor polynomial expanded 
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by Moving Least Squares method using node-wise discretization, can sophisticatedly 
solve dynamic crack propagation problem involving topology change; it is based on the 
strong formulation so that it enables one to simulate the problem by using nodal 
computation only. Thus, crack growth phenomenon can be very effectively traced by 
the method. This study presents the Particle Difference scheme for simulating dynamic 
crack propagation induced by an impact loading.  
  
 
 
2. DYNAMIC CRACK ANALYSIS  
 
     2.1 Particle Difference Scheme for Dynamic Problem 
 
     When considering linear elastic fracture mechanics with dynamic response under 
small deformation assumption, the governing equations are given by the transient form 
of Navier’s equation, natural boundary condition and essential boundary condition 
taking the form, respectively (See Lee and Yoon, 2004) 
 

                                               2        u u a   in                                      (1) 

   T       n u u n 1 u t   on t                                 (2) 

u u   on u                                                   (3) 

 
where u  denotes the displacement which is the function of time and space,   the 

material density, a  the acceleration, n  the unit normal to the natural boundary, t  the 
prescribed traction and u  the prescribed displacement; ij i j 1 e e  is a second order 

identity tensor,   and   the Lamé constants and  2    the Laplace operator. 

     In the Particle Difference Scheme, the derivative approximation is derived by the 
combination of the Taylor expansion and the Moving Least Squares method. The 
aforementioned strong forms can be directly discretized using the derivative 
approximation as the partial differential equations are numerically differentiated in the 
framework of FDM. The strong formulation at an arbitrary node Jx  is written in a matrix 

form as following  
 

 
1

N

J J J
I
A


    
 

K u F                                               (4) 

 

where  ,
T

J xJ yJu uu  is the nodal solution vector for node Jx  and  ,
T

J xJ yJF FF  the 

force vector. JK  is the 2 2  stiffness matrix consisting of the stiffness components for 

the neighbor nodes included in the approximation construction and A  denotes the 
assembly operator. JF  and JK  take different form according to the governing equation 

considered. For time integration of Eq. (1), the Newmark method is employed.  
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2.2 Dynamic Crack Propagation Modeling 
 
     The visibility criterion(Fleming et al., 1997) is introduced to model crack 
discontinuity, which discards the nodes placed at the opposite side of the crack when 
the crack cuts through the domain of influence of a sampling point. In order to check 
whether the crack will grow or not, dynamic stress intensity factor(Freund, 1990) is 
evaluated and it is computed from the dynamic energy release rate which takes the 
form  
 

    
2

2 21
I c I II c IIg A v K A v K

E


                                      (5) 

 
where E  is the Young’s modulus,   the Poisson’s ratio and cv  the crack tip velocity. 

 I cA v  and  II cA v  are wave related parameters and IK  and IIK  are the dynamic 

stress intensity factors for mode I and II, respectively. The energy release rate is 
computed by integration of the momentum equation over J integral domain. From Eq. 
(5), equivalent stress intensity factor is calculated and is compared with the dynamic 
fracture toughness of the given material in order to check whether the crack will grow or 
not. The mode I equivalent stress intensity factor is calculated by 
 

     , ,I II
Ieq c I h c II h cK v K v K v                                         (6) 

 
where   is crack growth angle. The mode II equivalent stress intensity factor can be 
obtained in the same way. Actually, new traction-free surface needs to be created to 
model growing crack. The Particle Difference scheme easily carries out this operation 
with simple node movement and addition.  
 
 
 
3. NUMERICAL EXAMPLE  
 
     A notched plate subjected to an impact loading is simulated to verify the 
performance of the developed scheme for 2-D dynamic crack problem.(See Fig. 1(left)) 
The constant velocity impact loading( 0V ) is applied along the lower edge of left side of 

the plate and traction-free boundaries are imposed along the remaining part of 
boundary to asymptotically model the infinite domain. In the simulation, 37833 /kg m  , 

9 2200 10 /E N m   and 0.25   are assumed. 240( 40 60 ) node model is used and 80 
step computations are performed with 66.5 10 sect    . Also, the dynamic stress 
intensity factor is computed using 1 1m m  J-domain around the crack tip. In Fig. 
1(right), the numerical result for the dynamic stress intensity factor is compared with the 
closed form solution and that of EFGM; time is normalized by wave speed dc  and the 

initial crack length 0a . Very good agreement is easily found between them. 

 

1606



  

    

0

1

2

3

0 0.5 1 1.5 2 2.5 3

K

tcd /a0

Analytic sol.

EFG

PDM

 
Fig. 1 Configuration and numerical result: Problem illustration(left); dynamic stress intensity factors for 

the stationary edge-crack problem(right)  
 
 
 
 
4. CONCLUSIONS 
 
     In this study, a strongly formulated particle difference scheme is presented for the 
simulation of dynamic crack propagation. The scheme is completely mesh-free or grid-
free such that only nodal computation is involved without numerical quadrature. 
Topology change resulting from the evolution of internal boundary due to fracture of a 
solid body is successfully modelled. The visibility criterion is employed for the 
description of crack discontinuity and the dynamic energy release rate is evaluated to 
determine crack growth direction as well as to check whether the crack will grow or not. 
The developed scheme is able to efficiently trace the transient crack propagation 
phenomenon with minimal modification of node arrangement. Numerical example 
reveals that the numerical scheme achieves very good accuracy and robustness. It is 
noteworthy that the particle difference scheme has strong merits in the simulation 
involving evolving boundary with topology change. The scheme is also expected to be 
straightforwardly applied to the dynamic problems with material nonlinearity.  
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