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ABSTRACT 
 

An instantaneous frequency identification method for time-varying structures using 
TVAR(Time-Varying Auto Regressive) model based on B-spline wavelet is presented in 
the paper. The algorithm based on single or multiple sample points is deduced for 
structural instantaneous frequencies using acceleration response signals. The 
simulation studies are performed for a three degrees-of-freedom time-varying dynamic 
model. The structural instantaneous frequencies in the condition of periodically varying 
are identified by using single or multiple sample points. A confirmatory experiment is 
carried out using a cantilever beam with time-varying mass characteristics. The first 
three instantaneous frequencies are identified using the acceleration response signals. 
Results show that the proposed identification method is efficient and robust. 
This paper focuses on the parameters identification for time varying structures. Based 
on B-spline wavelet on the interval，time-varying auto regressive model is established 
and the parameters identification procedure is deduced for structural instantaneous 
frequencies using accelerations responses signals. Depending on the different number 
of sample points, TVAR (time-Varying Auto Regressive) and TVARV (Time-Varying Auto 
Regressive for multi-Variable) are proposed. The simulation studies are performed 
based on a three degrees-of-freedom time-varying dynamic model. The structural 
instantaneous frequencies in the condition of periodically varying are identified based on 
the proposed two methods. At last, a confirmatory experiment is carried out using a 
cantilever beam with time-varying mass characteristics. The first three instantaneous 
frequencies are identified well using the acceleration response signals. And the results 
of the experiment demonstrate that the proposed two methods have very good validity, 
efficiency and practicality. 
Keywords: Time-Varying System, System Identification, B-Spline Wavelet, TVAR 
Model, TVARV Model. 
 
 
1. INTRODUCTION 
 
     Time sequence model was initially used for statistical analysis of the sunspot 
movements by Yule in 1927. But many processes are inherently time-varying and 
cannot effectively be characterized using time invariant models. One approach to 

1913



characterize such processes is to employ the time-varying auto regressive moving 
average (TVARMA) model (Xu 2003) or the time-varying autoregressive (TVAR) model 
(Liu 2006). 
Two main classes of methods can be used to solve the TVAR model estimation problem. 
The first uses recursive estimation of the time-varying coefficients, some of the most 
popular recursive algorithms are the least mean square (LMS) algorithm, the recursive 
least square (RLS) algorithm (Ljung 1990) and the Kalman filter algorithm (Morbidi 
2008). And the second constrains the evolution of the coefficients to be linear or 
nonlinear combinations of some basis functions with appropriate properties. Generally, 
the associated time-varying coefficients are expanded as a finite sequence of 
predetermined basis functions (Chon 2005). Then the problem is reduced to time 
invariant coefficient estimation, where the unknown adjustable model parameters are 
those involved in the basis expansion. Hence, the time-varying modeling problem is 
simplified to basic functions selection and parameter estimation. 
The choice of basic functions can significantly affect the performance of the parameter 
estimates. However, there is no guideline on how to choose the appropriate basis 
functions for a specific modeling problem. Therefore an attractive approach is to expand 
the time-varying coefficients using wavelets as the basis functions. B-spline wavelet on 
the interval has compact support and orthogonality characteristics. B-spline as 
piecewise polynomial functions were originally introduced as wavelet and scaling 
functions (Chui and Wang 1992). Furthermore B-spline wavelet was used in the system 
identification (Billings and Coca 1999).  
Depending on the different number of sample points, TVAR and TVARV based on 
B-spline wavelet are proposed in the paper. The simulation study is performed based on 
a three degrees-of-freedom time-varying dynamic model using the structural 
acceleration response signals. The identification procedure has been shown to be 
effective in tracking time-varying parameters. And an experiment is carried out using a 
cantilever beam with time-varying mass characteristics. The first three instantaneous 
frequencies are identified well using the acceleration response signals. Results show 
that the proposed methods are valid, efficient and practicable. 
 
 
2. TIME-VARYING AUTO-REGRESSIVE 
      
     Time-Varying Auto-Regressive (TVAR) can be represented as 
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Where t  is the time instant or sampling index of the signal tx ; the term te  is the 
residual error accommodating the effects of measurement noise, and modeling noise 
that can be viewed as a stationary white noise sequence;   piti ,...,2,1,   is the time 
varying coefficient functions to be determined in the model; p  is the order of AR model. 
 ti  can be expended by a set of orthogonal basis functions, such that the following 

expression 
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Where ij  represents the expansion parameters, and   mjtg j ,...,1,0,   is the set of 

basic functions. Define 
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TA  ,...,,...,,..., 0110                           (3) 
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Such that model Eq. (1) can be rewritten as 
 

t
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2.1 Coefficient estimates 
 
Based on Eq. (5), the following expression can be described using accelerations 
responses signals. 
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The Eq. (6) can be written in a compact form 
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In order to get the least squares estimate of matrix A , setting the residual sum of 
squares as the objective function. 
 

)()( AAEEJ TT                           (9) 
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Substituting Eq. (9) into Eq. (10), yields 
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  TT
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In order to solve the estimated value of A  quickly, recursive least square algorithm can 
be adopted. Setting 
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Such that the following expressions are obtained 
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The new value is obtained constantly from the original value plus the revised one. Initial 
values 0P  and 0Â  need to be known, for example 
 










IP

A

0

0 0ˆ
                                (15) 

 
Where 1  and 410 . I  is an unit matrix whose dimension is      pmpm  11 . 
 
2.2 parameter identification 
 
The natural frequency and damping ratio of the system can be calculated after obtaining 
the coefficients of the AR model. Set the coefficient of the time-varying AR model to be 
constant in the sampling time interval t , that is tdtd  (d=1, 2… N，N is total sampling 
points). Therefore the following homogeneous differential equation is 
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)( di ts  solved in the Eq. (16) is the pole of the system transfer function, which contains 

the information of natural frequency and damping ratio. 
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Therefore natural frequency )( di tf  and damping ratio )( di t  of the system are 
calculated as follow respectively. 
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2.3 Time-Varying Auto-Regressive for multi-Variable 
 
The time-varying auto-regressive for multi-variable (TVARV) model can be denoted as 
the following equation. 
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Where T

ltttt xxxX ],,,[ 21  and T
ltttt eeeE ],,,[ 21  are the sampled measured output and 

error signals. )(ti ( i =1, 2… p) are the time varying parameters to be determined 
whose dimension is ll  ; p is the model order. 
The )(ti  can be expended by a set of orthogonal basis functions, such that the 
following expression 
 

)()(
0

tgt j

m

j
iji 



                               (21) 

 
Where )(tg j  ( j =0, 1… m) are basis functions and ij  is the coefficient matrix which 

can be written as 
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For obtaining )(ti , setting 
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Therefore model Eq. (20) can be rewritten as 
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After solving Eq. (25) to obtain the coefficients of the AR model, the following 
homogeneous differential equation can be described as 
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Matrix )( dtG  that has the same eigenvalues with Eq. (26) is composed to avoid solving 
nonlinear equations. 
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Therefore the eigenvalues can be calculated by the eigenvalue decomposition of )( dtG . 
And the natural frequencies and damping ratios of the system are calculated using Eq. 
(17), Eq. (18) and Eq. (19). 
 
 
 
3. B-SPLINE WAVELETS 
 
The TVAR model includes time dependent auto regressive coefficients which can be 
expanded by a set of orthogonal basis functions. Thus the time-varying problem is 
transformed into a time-invariant one. Conventionally, the basic functions have been 
chosen to be polynomials including Chebyshev and Legendre types, prolate spheroidal 
sequences which are the best approximation to band limited functions (Zou and Chon 
2004). 
In the paper, B-spline wavelet on the interval (BSWI) is chosen as the basis functions. 
B-spine scaling functions   j

km,  ( m  is the order and j  is scale) can be expressed 

(Guan 1995) as follows. 
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Choose   4

,4 k  as scaling function which has 19 expressions in total, i.e.,   4
3-4， 、   4

2-4，

、   4
1-4，  are on 0 boundary ,   4

314， 、   4
144， 、   4

154，  are on 1 boundary and   4
0,4 、   4

1,4

、   4
2,4 、   4

3,4 、   4
4,4 、   4

5,4 、   4
6,4 、   4

7,4 、   4
0,4 、   4

9,4 、   4
10,4 、   4

11,4 、   4
12,4 are 

internal wavelets. These scaling functions are shown in Fig. 1. 
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Fig.1 the scaling function of B-spline 

 
 
 
 
4. SIMULATION EXAMPLE 
 
A system of three degrees-of-freedom is shown in Fig. 2. 
 
 
 

 
Fig.2 three degrees-of-freedom dynamic model 

 
 
 
Where kgmmm 1321  , mNscccc /5.04321   and mNkkk /4000431  . 
For comparison of the results of TVAR a TVARV, the instantaneous frequencies are 
identified in the condition of periodically varying. Sampling frequency f = 200Hz and total 
time T = 30s. The result of TVAR is obtained only depend on single acceleration 
response signal, while TVARV using all three degree-of-freedom acceleration signals.  
Fig. 3 - Fig. 5 show the structural instantaneous frequencies identified by the proposed 
two methods. 
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Fig.3 Comparison of 1st instantaneous frequency identified using TVAR and TVARV 
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Fig.4 Comparison of 2nd instantaneous frequency identified using TVAR and TVARV 
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Fig.5 Comparison of 3rd instantaneous frequency identified using TVAR and TVARV 

In order to compare the results of TVAR and TVARV further, define the Mean Absolute 
Percentage Error (MAPE) as follow 
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Where NL represents the total number of sample points, if  is the true value of 

instantaneous frequency and 
~

if  is identified value. The MAPE are shown in Table 1. 

 
 

Table 1 Comparison of identified error between TVAR and TVARV 
 MAPE（%） 

Order 1 2 3 
TVAR 1.8156 1.0346 2.0935 

TVARV 1.5745 0.9751 1.3636 
 
 
 
The simulation results demonstrate that the proposed two methods can follow the true 
parameter variation very well. And TVARV gives better results than TVAR which can be 
explain as follow: TVARV uses acceleration response signals in all degrees of freedom 
that contain more modal information. 
 
 

 
Fig.6 A time-varying cantilever beam test 

 
 
5. EXPERIMENTAL STUDY 
 
5.1 Experimental Design 
 
An aluminum cantilever beam which is fixed on the right end is shown in Fig.6. Its 
dimension is 1300×80×20 mm, the Young's modulus is 210 N/m 107E   and density is 
 2700 3m/kg . The left end is bonded an iron square box with 7 powerful magnets 
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stuck to its bottom and surrounding. The box can be called as a ‘magnetic box’. In test 
process, 1kg of iron flour is slowly poured into the ‘magnetic box’ with a uniform speed 
through a funnel. Because of the effect of magnetic field, the iron flour will be firmly stuck 
together with the ‘magnetic box’. Therefore, the cantilever beam can be considered as a 
time-varying dynamic system. 
 
5.2 Experiment Process 
 
The 1kg of iron flour is divided into ten bags averagely which is poured into the 
‘magnetic box’ in turn. The beam is divided into 13 units. Three acceleration response 
signals of No.5, 6 and 8 points are sampled by the data acquisition card of NI 4431 as 
shown in Fig.7. 
 
 
 

 
Fig.7 The sketch chart of cantilever beam vibration test 

 
 
 
 
If the beam with some bags of iron flour and no change is called as a ‘frozen state’, The 
cantilever beam has 11 ‘frozen states’ totally together with no iron flour state (the 
‘magnetic box’ is empty). Each ‘frozen state’ is a time-invariant system. 33 FRF of 3 
measuring points can be obtained by the data acquisition card, which can be regarded 
as the reference for time-varying system. 
 
5.3 Experimental Result 
 
For the time-varying system, the sampling frequency is 1024Hz and the sampling time is 
30s. The first three instantaneous frequencies are identified are shown in Fig.8 - Fig.10. 
TVAR is based on the acceleration response signals of No.5 sampling point while 
TVARV uses signals of three sampling points. 
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Fig.8 The first identified time-varying frequencies 
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Fig.9 The second identified time-varying frequencies 
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Fig.10 The third identified time-varying frequencies 
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In the Fig.8 - Fig.10, the identified time-varying instantaneous frequencies match up the 
reference values well. And TVARV gives better results than TVAR. 
 
 
6. CONCLUSION 
 
An instantaneous frequency identification method for time-varying structures based on 
B-spline wavelet is presented in the paper. Depending on single or multiple of 
acceleration sampling signals, Structural instantaneous frequencies can be identified 
quickly using TVAR or TVARV algorithm respectively. The simulation study and 
experimental results show that the proposed methods are effective in tracking 
time-varying frequencies. 
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