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ABSTRACT 
 

This paper presents an experimental study of quantitative identification of damages 
in beams using guided wave. A Bayesian probabilistic approach is proposed to identify 
the damage location, length and depth. The damage identification is achieved by 
solving an optimization problem, in which the probability density function (PDF) of the 
damage parameters is maximized. In this study a hybrid particle swarm optimization 
(HPSO) algorithm is employed to guarantee the global optimum solution. One 
advantage of the proposed methodology is that the Bayesian approach not only 
pinpoints the location, length and depth of the damage, but also quantifies the 
uncertainties associated with the damage identification results through calculating the 
posterior PDF of the identified damage parameters. This provides essential information 
for making decisions on necessary remedial work. In the experimental study a 
piezoceramic transducer is used for excitation. The guided wave signals are then 
measured using a laser Doppler vibrometer system. Metallic beams with different 
damage configurations are considered in the experimental verification. 
 
1. INTRODUCTION 
 

Beams are commonly used as structural components in different engineering 
structures, such as civil and mechanical engineering. Existence of damages in 
structural components can potentially lead to failure of structures. In the last decade 
various damage detection methods (Kim et al. 2004; Lam et al. 2008; Rosales et al. 
2009) have been developed to ensure the safety and reduce the maintenance costs of 
structures. In recent years guided wave has been recognized as one of the promising 
methods for damage detection. It requires a high frequency excitation to generate 
pulses or wave packets propagating in structures. The main advantages of guided 
wave are its high sensitive to small damages (Ng & Veidt 2011; Veidt & Ng 2011) and 
large inspection region with a small number of transducers.  

 
Different methods have been developed to detect damages in structures using 

guided wave. Nag et al. (2002) proposed a model-based approach to identify 
delaminations in composite beams. Genetic algorithm was used to update a damaged 
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spectral element model for damage identification. The proposed method was verified 
using numerical simulations. Krawczuk (2002) employed a genetic algorithm gradient 
technique for crack identification in beams. The feasibility and capability of the 
proposed method was demonstrated through numerical case studies. Liew and Veidt 
(2009) applied artificial neural network to identify damage in beams. Wavelet 
decomposition was used to construct pattern features for damage identification using 
the artificial neural network. The proposed method was investigated through 
experimental case studies. Ng et al. (2009) proposed a probabilistic optimization 
approach to identify damages in beams. The simulated annealing was employed as the 
optimization algorithm in damage detection. Comprehensive numerical case studies 
were used to investigate the performance of the proposed method in identifying 
damages with different sizes and under different measurement noises. Rucka (2010) 
numerically and experimentally investigated the wave propagation in a damaged beam. 
A method was proposed to detect damages by analyzing wave speeds and reflected 
waves from the damages. Pau and Vestroni (2011) proposed a damage identification 
approach using longitudinal wave propagation. Damages were identified by comparing 
the analytical and measured time histories of the exited waves. The proposed approach 
was verified through numerical and experiment studies. 

 
In this study a probabilistic approach is proposed to identify damages in beams. The 

proposed method is a model-based approach, which combines a numerical simulation 
model and a probabilistic model. Hence it is not only able to provide quantitative 
information of the damages but also quantifies the uncertainties associated with the 
damage identification results, which provides essential information for making decisions 
about necessary remedial work. The proposed approach is able to achieve the damage 
identification with only one single measurement point, which significantly reduces the 
cost of the damage detection process. In the proposed method a damaged beam 
model is developed using a computationally efficient frequency domain spectral finite 
element method based on the Mindlin-Hermann theory. The damage identification is 
achieved by maximizing the posterior probability density function (PDF) of damage 
parameters. A hybrid optimization method, which combines the particle swarm 
optimization algorithm, is proposed to enhance the reliability and efficiency in 
determining the global optimum. One of the objectives of this study is to provide an 
experimental verification for the proposed damage identification method.  

 
The organization of the paper is as follows. The frequency domain spectral finite 

element method based on the Mindlin-Hermann theory is presented in Section 2, along 
with a throw-off element for modeling semi-infinite and infinite beams, and the modeling 
of the damaged beam. The proposed probabilistic approach is then presented in 
Section 3. The details of the experimental verification are provided in Section 4. Finally, 
conclusions are drawn in Section 5. 
 
2. Spectral Finite Element Method 
 

The longitudinal guided wave propagation in beam-type structures can be modeled 
using a number of frequency domain spectral finite elements based on Mindlin-
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Herrmann theory. The theory takes into account independent shearing deformation of 
longitudinal guided wave propagation. A j -th frequency domain spectral finite element 
with length jL  has two nodal points located at left and right ends of the beam, 
respectively. Each nodal point has two degrees-of-freedom, a longitudinal displacement 
and a rotation, which describes the transverse contraction of longitudinal guided wave 
propagation. The governing equations (Doyle1997; Krawczuk et al. 2006) are 
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where ju  and j  are the horizontal displacement and rotational angle on the neutral 
axis of the beam. jE  and jv  are the Young’s modulus and Poisson’s ratio, respectively. 

jb  and jh  are the width and thickness of the beam. j j jA b h   and 3 /12j j jI b h are the 
cross-section area and second  moment of area of the beam. / (2(1 ))j j jE    and 

/ ((1 )(1 2 ))j j j j jE       are Lame constants. j  is the density. 2
1 12 /S   and 

2
2, 1((1 ) / (0.87 1.12 ))j j jS S      are correction factors (Doyle 1997). The spectral 

representations for ju  and j  are 
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where ,ˆn ju  and ,n̂ j  are the Fourier coefficients associated with the responses variable 

ju  and j  at n-th angular frequency n . N  is the Nyquist frequency and i  is the 
imaginary unit. The spectrum relation of the dependent variable ˆ ju  and ˆ

j  can be 
obtained by assuming solutions in the forms 
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where jk  is the wavenumber corresponding to n . jU  and j  are amplitude 
spectrums at n-th angular frequency. Substituting Eqs. (3) and (4) into the differential 
governing equation, the characteristic equation for the solution of the wavenumber can 
be obtained as 
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where 
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Eq. (5) is a second order standard polynomial eigenvalue problem and there are four 
eigenvalues jk  and eigenvectors { }T

j jU  . Using the QZ algorithm (Jean-Pierre & 
Tisseur 2003) and arranging eigenvectors in a matrix R , the general solution at 
frequency n  is  
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where ,m jC  are unknown coefficients to be found from the nodal conditions at 0x   and 

jx L  as 
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The relation between the spectral longitudinal displacement and lateral contraction 

with the unknown coefficient ,m jC  is 
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The forces at the nodal spectral axial and shear forces at left and right ends are  
 

        
, , 1

ˆˆ 0, 0,ˆ ˆˆ 2 0, ,j n j n
j j j j j j j n j j j

u
F A A Q I S

x x 
  

     
  

      
   

 (15) 

 

        
, , 1

ˆˆ 0, 0,ˆ ˆˆ 2 0, ,j n j n
j j j j j j j n j j j

u
F A A Q I S

x x 
  

     
  

         
 (16) 

 
and they can be related to the unknown coefficient matrix jC  as 
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where  1, 2j j j jA    ,  2, j j jA   and 3, 1j j jI S  . The dynamics stiffness matrix 

,n jK  can be obtained by 1
2, 1,j j

T T . 
 
     2.3 Throw-off element for modeling semi-infinite and infinite beams 

Different to the conventional finite element method, the frequency domain spectral 
finite element method allows modeling semi-infinite and infinite beams. This section 
presents a formulation of a throw-off element for simulating a non-reflecting boundary 
condition for wave propagation problems. In this study guided wave is generated by a 
transient excitation and then propagates from the excitation location with no secondary 
disturbances. For a very long beam, the guided wave reflection from boundaries can be 
neglected because of attenuation after a long travel distance and/or the wave does not 
research the location under consideration within the time of observation. Considering a 
throw-off spectral element with a non-reflecting boundary at right end of the beam, the 
unknown constant 3, jC  and 4, jC  in Eq. (9) can be neglect as they represent the wave 
propagating in the direction toward left end of the beam. The matrix 1, jT  and 2, jT  can 
then be reduced to 
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The dynamics stiffness matrix for the throw-off element can be obtained by 

1
, 2, 1,n j j j

K T T . 
 
     2.2 Modeling damaged beams 

With the throw-off element described in the Section 2.1, a damaged semi-infinite 
beam is modeled using three spectral finite elements and a throw-off element. The 
throw-off element is located at the right end of the beam, and hence, no wave is 
reflected from the right beam end. In this study a step damage is modeled by reducing 
the cross-sectional area of a beam region with length Ld . The location of the damage 

dL  is defined as the distance between the left end of the step damage and the left 
beam end. The cross-section area reduction of the damage can be calculated based on 
the depth dd  of the step damage as ( )db h d . The step damage is parameterized by 

dL , Ld  and dd , which control the damage location, length and depth. This damaged 
beam model will then be employed to identify the damage in Section 3 following a 
probabilistic approach. 
 
3. PROBABILISTIC DAMAGE IDENTIFICATION APPROACH 
 

A probabilistic approach is proposed to identify damages based on measured 
longitudinal guided wave data. The approach treats the damage parameters described 
in Section 2 as unknowns parameters and identify them by minimizing the discrepancy 
between the simulated and measured data. The proposed probabilistic approach not 
only determines the damage location, length and depth of the damage in beams but 
also quantifies the uncertainties associated with the damage identification results. 
 

The proposed probabilistic approach follows the Bayesian statistical identification 
framework (Beck & Katafygiotis 1998). The framework embeds a class of deterministic 
structural model M  within a class of probability model ( )P  .   is a prediction-error 
model parameter. In this study the deterministic structural model M  is the damaged 
frequency domain spectral finite element beam model. The framework allows 
longitudinal guided wave responses prediction ( ; )u t θ  and modeling of prediction error 

( , )e t θ , which is defined as the difference between the predicted and measured guided 
wave responses ( )u t , and is mainly due to the measurement noise and modelling error. 
It is assumed that the prediction errors are spatially and temporally independent, and 
normally distributed, and hence, the prediction error is a Gaussian distribution. This 
assumption allows for a single prediction error parameter  , corresponding to the 
standard deviation of the assumed Gaussian distribution. Using the Bayes’ theorem, 
the posterior probability density function (PDF) of the uncertain parameter vector 

{ , } ( )T T S a θ a  for a given set of measured guided wave data D  and a given class 
of structural models M  can be calculated as 
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where c  is a normalizing constant to ensure the left-hand side of Eq. (22) is equal to 
unity. ( | ) ( )p M a a  is the prior PDF of a  over the set of possible parameter values 

( )S a . The prior PDF is used to reflect the engineer’s judgement on the relative 
plausibility of different values in the parameters. ( | , )p D Ma  is the likelihood of 
observing the data given the parameters a  and is defined as 
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where oN  is the number of measurement points. tN  is the number of measured time 
steps.   denotes the standard Euclidean norm of the second kind. In practical situation, 
there exists some uncertainties related to the Young’s modulus of the material. Thus 
the unknown parameter vector θ  in a  contains damage location dL , length Ld , depth 

dd  and Young’s modulus E . 
 

Using the proposed probabilistic approach to identify the damage, the posterior PDF 
of the unknown parameters need to be obtained and it can be calculated by integrating 
Eq. (22) over   as 
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
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where ( ) a  is a slowly varying function of  . In guided wave problem the number of 
time step in the measured data is usually very large, and hence, the value of 

( | , )p D Mθ  becomes negligible everywhere except the region of the parameter space 
where the posterior PDF of the damage parameters is close to its global maximum 
value. Using the asymptotic approximation (Papadimitriou et al. 1997), Eq. (24) can be 
approximated as  
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where 1c  is another normalizing constant. ( )J θ is a measure-of-fit function between the 
simulated and measured guided wave signals and is defined as 
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The damage identification is achieved by maximizing the posterior PDF ( | , )p D Mθ  in 
Eq. (25), which is equivalent to minimize the ( )J θ  function. 2̂  is the optimal variance 
in the prediction error model. In this study a hybrid particle swarm optimization 
approach, which combines the particle swarm optimization algorithm (Kennedy & 
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Eberhart 1995) and simplex search method, is employed to solve the optimization 
problem. Once the optimal parameters are determined, the associated uncertainties 
can be quantified by the posterior PDF, which can be approximated by a weighted sum 
of Gaussian distributions centered at R  optimal points as 
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where 1

N
A  is the inverse of Hessian matrix of the function ( ) ln ( )( 1) / 2t og J N N θ θ  

evaluated at r-th optimal point ( )ˆ rθ  for 1,...,r R . ( , )N μ Σ  denotes a multivariate 
Gaussian distribution with mean μ  and covariance matrix Σ . 
 
 4. EXPERIMENTAL VERIFICATION 
 
     4.1 Experimental setup 

In this study the proposed damage identification approach was verified using 
aluminum beams (Grade 6060-T5). The length of the beams was 2 m with 126 mm2 
rectangular cross section. A 1262 mm3 piezoceramic transducer was adhesively 
bonded to a beam end to generate the longitudinal guided wave. To enhance the 
excitability, a 12  6  4 mm3 backing mass made by brass was attached to the 
piezoceramic transducer. The excitation signal was an 80 kHz narrow-band eight-cycle 
sinusoidal tone burst pulse modulated by a Hanning window. Fig. 1 shows the 
excitation signal in time and frequency domain. 

 

0 20 40 60 80 100 120 140 160
0

0.5

1

Frequency (kHz)

N
o

rm
a

liz
e

d
 a

m
p

lit
u

d
e

0 0.2 0.4 0.6 0.8 1

x 10
-4

-1

-0.5

0

0.5

1

Time (sec)

N
o

rm
a

liz
e

d
 a

m
p

lit
u

d
e

a)

b)
 

 
Fig. 1 Eight-cycle 80 kHz sinusoidal excitation signal modulated by a Hanning window 

in a) time and b) frequency domain 
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The signal was generated by a computer controlled signal generator (Stanford 
Research DS345) with 10 V peak-to-peak output voltage and was then amplified 10-50 
times through a signal amplifier (Krohn Hite model 7500) before sending the 
piezoceramic transducer. A one-dimensional laser Doppler vibrometer (Polytech OFV 
303/OFV 3001) was employed to measure the longitudinal guided wave signals at 450 
mm from the excitation location. The measurement point was centred at the shorter 
side of the beam cross section to measure the out-of-plane motion due to the Poisson 
effect of the longitudinal guided wave. A schematic diagram of the experimental setup 
is shown in Fig. 2. Finally, the measured signals were fed into a computer via an 
oscilloscope. The signal-to-noise ratio was improved by averaging the signals over a 
number of acquisitions.  
 
 

Backing mass

Piezoceramic 
transducer

Longitudinal guided wave
Step damage

Laser head
 

 
Fig. 2 Schematic diagram of the experimental setup 

 
 
     4.2 Experimental case studies 

Two cases were considered in the experimental case studies to verify the proposed 
damage identification approach. Case C1 considered a step damage located at dL = 
1062.50 mm with 75.00 mm damage length and 2.00 mm damage depth. Case C2 
considered a damage with smaller damage depth ( dd = 1.10 mm) and was located at 

dL = 915.00 mm with 90.00 mm damage length. Table 1 provides a summary of all 
damage cases. The duration of the measured data is 710-4 s, which allows monitoring 
a 1 m long region from the measurement location. 
 
 

Table 1. Summary of all the damage cases in the experimental case studies 
Case Damage location ( dL ) 

(mm) 
Damage length ( Ld ) 

(mm) 
Damage depth ( dd ) 

(mm) 
C1 1062.50 75.00 2.00 
C2 915.00 90.00 1.10 

 
 

The proposed damage identification approach described in Section 3 was not only 
employed to characterize the damage in each case but also quantified the uncertainties 
associated with the damage identification results. The damage identification results are 
summarized in Table 2. The predicted damage location, length and depth for Case C1 
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are 1045.50 mm, 69.71 mm and 2.03 mm, respectively. The corresponding prediction 
errors are only 1.60%, 7.05% and 1.50%. The results show that the proposed damage 
identification approach is able to accurately characterize the damage. Case C2 
considered a smaller damage depth than Case C1. The reflected longitudinal guided 
wave amplitude in Case C2 is smaller than that in Case C1. It is expected that it is 
more challenging to identify the damage in Case C2. The predicted damage location, 
length and depth for Case C2 are 902.88 mm, 87.46 mm and 1.02 mm. The prediction 
errors for these damage parameters are 1.33%, 2.82% and 7.00%, respectively. 
Overall, the proposed damage identification approach is able to accurately identifying 
the damage in all cases.  

 
 

Table 2. Summary of the results in damage identification 
Case Damage location ( dL ) 

(mm) 
Damage length ( Ld ) 

(mm) 
Damage depth ( dd ) 

(mm) 
C1 1045.50 (0.0067%) 69.71 (0.1381%) 2.03 (0.5733%) 
C2 902.88 (0.0123%) 87.46 (0.1267%) 1.02 (1.6179%) 

Note: value in bracket is the coefficient of variation (COV) 
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Fig. 3 Comparison of the measured data and the simulated signals from the damaged 
beam models with the identified parameter vector θ  for a) Cases C1 and b) C2 (sold 

lines: simulated signals; dashed lines: measured data) 
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Fig 3 shows a comparison of the measured data and the simulated signals from the 
damaged beam models with the identified parameter vector θ  for Cases C1 and C2. 
The first pulse is the incident wave. The second and third pulses are the waves 
reflected from damage and reflected wave rebounded from the left beam end. These 
figures show that the simulated signals perfectly match the measured data, which 
indicates the high accuracy of the damage identification. 
 

As discussed in Section 3, the damage identification approach was developed based 
on the Bayesian statistical framework, in which the uncertainties are quantified by 
determining the posterior PDF of each damage parameter. As it is not possible to plot a 
figure with more than three dimensions, Fig. 4a and 4b only show the normalized 
marginal PDF of the identified damage length and depth, which were calculated by 
integrating the PDF with respect to other identified parameters, for Cases C1 and C2, 
respectively. The axes in these figures are plotted at the same scale to enable direct 
comparison. In this study a non-informative prior distribution was used in the Bayesian 
statistical framework to calculate the posterior PDF, and hence, the results depend only 
on the measured data. Both figures show that the PDF value drops shapely for small 
deviations from the identified damage length. For damage depth, it is obvious that the 
PDF value for small deviations drops more slowly from the identified damage depth. 
This means the confidence level of the identified damage depth is lower than the 
identified damage length. 
 
 

 
 
Fig. 4 Normalized marginal PDF of the identified damage length and depth for a) Case 

C1 and b) C2 
 
 

The results were also confirmed by calculating the coefficient of variation (COV) of 
the damage identification results. The results of the all identified damage parameters 
are shown in Table 2. The COV values indicate that the confident level of the identified 
damage location is always very high given the fact that the guided wave is very 
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sensitive to the damage location. However, the confident level of the identified depth is 
generally the lowest among the identified damage parameters.  

 
 

5. CONCLUSIONS 
 
This paper has presented an experimental study of identifying damages in beams using 
a probabilistic approach. Longitudinal guided wave measured at a single point on the 
beams was employed as the signal to identify the location, length and depth of the step 
damage. In addition to identifying the damages, the proposed approach also quantified 
the uncertainties associated with the damage identification results. In the experimental 
study a piezoceramic transducer was used for exciting the longitudinal guided wave. 
The wave signals were then measured using a one-dimensional laser Doppler 
vibrometer. Metallic beams with two different damage configurations were considered 
in the experimental case studies. They demonstrated the capability of the proposed 
damage identification approach. Overall the proposed approach is able to accurately 
identify the damages. The work is currently underway to consider comprehensive 
experimental case studies to fully verify the proposed damage identification approach. 
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