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ABSTRACT 
 

     Ferroelectric, ferromagnetic or multiferroic materials as components of smart 
structures are widely used e.g. in aerospace or automotive technology. Although the 
material behavior of smart structures has been intensively studied during the past two 
decades there are still many open questions. 
 
In this paper we present a micromechanically and physically motivated nonlinear 
constitutive model of ferroelectric materials. In contrast to most of the investigations on 
this topic, results for constitutive behavior are modeled without solving specific 
boundary value problems based on expensive FEM calculations. In fact, a simple 
numerical procedure is developed, on the one hand condensing the problem to a single 
material point or RVE, on the other maintaining features such as multiple grain 
interactions. Some results are presented and discussed in terms of hysteresis loops 
and residual stresses in a polycrystalline material. 
 
 
1. INTRODUCTION 
 
     Ferroelectrics, as components of smart materials, are piezoelectric materials with 
the ability to switch their polarization direction under an applied mechanical (ferroelastic 
effect) or electric (ferroelectric effect) field. In the past two decades many researchers 
investigated the material behavior of smart structures (Huber et. al. (1999), Kamlah 
(2000), Enderlein (2007)). So, the material behavior of ferroelectrics in principle is well 
known. For the sake of analysis, ferroelectric structures are usually numerically 
simulated by the Finite Element (FE) method. The numerical results are commonly 
validated by experimental results, predominantly looking at different types of hysteresis 
loops (e.g. Hwang (1994)). At that point it is important to mention that the experimental 
results are usually based on a uniaxial loading. Within that context, it is dispensable to 
solve complex boundary value problems and thus a FE – implementation is redundant. 
In fact, it seems reasonable that the numerical simulation is decreased to an uniaxial 
problem without applying complex arithmetic techniques of a CAE software. However, 
grain-grain-interaction is crucial and taken into account still requiring a multi-
dimensional tensorial mathematical framework for the constitutive model. 
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In our approach polarization crosses replace the single grains of a representative 
volume element (RVE). Each polarization cross exhibits four perpendicular domain 
orientations and stands for one specific grain. In contrast to a FE approach, where 
grains are spatially distributed and commonly represented by Gaussian points, in the 
condensed model all material points, i.e. polarization crosses are concentrated in one 
spatial point. According to the domain structure of each point, these crosses can be 
arbitrarily oriented relative to the axis of the uniaxial boundary value problem. The 
resulting residual stresses between the grains due to the switching phenomena are 
realized by averaging within the framework of a Voigt approximation accounting for 
global equilibrium. First, we simulate the switching behavior of a single grain with an 
arbitrarily orientation. In the next step an arbitrary number of grains is realized but 
without residual stresses. Finally, residual stresses between the grains of the 
representative volume element are modeled by the above mentioned averaging 
technique. 
 
 
2. THEORETICAL BACKGROUND 
 
     In the following, we present the governing field and constitutive equations for 
ferroelectric materials, the switching criterion and resultant Voigt approximation for our 
approach. 
 
     2.1 Governing field and constitutive equations 
     In ferroelectric materials, the domain wall motion leads to irreversible strain and 
polarization. Referring to the nonlinear effects of ferroelectric materials, many 
researchers investigated the material behavior in the past decades (e.g. Hwang et. al. 
(1994), Huber et. al. (1999), Kessler et. al. (2001), Enderlein (2007)). Therefore, we 
only show the resulting equations without any derivation. 
 
The balance equations for mechanical and electrostatic equilibrium are 
 
 s ij, j + bi = 0,

Di,i =wV ,
 (1) 

 
where volume forces and charges bi  and wV

are neglected in the following. Within the 
context of an uniaxial boundary value problem, only the x1

-coordinate is considered 
leading to the conditions 
 
 ¶s11

¶x1

= 0 Þ s11 = const,

¶D1

¶x1

= 0 Þ D1 = const.

 (2) 

 
Stresses and electric displacements s 22,D2

 only occur, if there is a kinematic constraint 

3957



in the x2
-direction (uniaxial strain assumption). 

 
     The constitutive law for stress s ij

 and electric displacement Di  of nonlinear 
ferroelectric material is shown in the following equations: 
 
 s ij =Cijkl ekl

tot -ekl
sp( )- elijEl,

Di = eikl ekl
tot -ekl

sp( )+k ilEl +Pi
sp.

 (3) 

 
In Eq. (3), Cijkl  describes the elastic, elij  the piezoelectric and k il  the dielectric 

constants of the given boundary problem. Further, ekl
tot -ekl

sp stands for the recoverable 
strain as difference of total and spontaneous strains, El  represents the electric field 
and Pi

sp  describes the remanent polarization. 
 
     Due to tetragonal unit cells, the domain structure of a grain exhibits 90° and 180° 
domain walls. So, we have four polarization directions in each grain. Relating to a 
global coordinate system, the orientation of a grain is described by the angle . The 
volume fraction for each polarization direction is described by v(N ) . From that point, the 
following equations are valid for all grains. 
 
 

0 £ v(n) £1, v(n) =1
n=1

4

å , Þ v0

(n) = 1

4
.  (4) 

 
Here, v0

(N )  describes the initial condition of volume fraction for each polarization 
direction. As a result of Eq. (4), the resulting material constants for a grain are 
 
 

Cijkl = Cijkl
(n), elij = elij

(n), k ij = k ij
(n)

n=1

4

å .
n=1

4

å
n=1

4

å  (5) 

 
A variation of the volume fraction v(N ) of domain N  is equal to a domain wall motion. 
The domain wall motion is the result of switching processes of elementary cells and 
leads to a change of spontaneous polarization Pi

sp . Additionally, 90° switching 
processes yield a remanent strain ekl

sp . These two quantities are shown in the resultant 
equations (Enderlein (2007)): 
 
 

. (6) 
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In Eq. (6), b  represents the switching direction and eD  is a temperature-dependent 
material parameter based on the lattice constants of a tetragonal elementary cell. 
 
     2.2 Switching criterion 
     The switching criterion for ferroelectric materials is well investigated and we only 
show the conclusion. For more detailed information look at Hwang (1994), Huber et. al. 
(1999) and Enderlein (2007). The simplified switching criterion, which is used in this 
paper, is given as 
 
 

wdiss =s ijeij
sp +EiDPi

sp ³ wcrit =
2P0EC, b =180°

2P0EC, b = ±90°
.

ì

í
ï

î
ï

 (7) 

 
Here, eij

sp  and DPi
sp  represent the switching strain and polarization of a domain species. 

These quantities are given in Eq. (6). EC  and P0
 are material properties and describe 

the coercive field strength and the lattice immanent polarization. 
 
     2.3 Averaging technique and Voigt approximation for representative volume element 
     In this section we want to focus on the Voigt approximation for the representative 
volume element. The idea of the presented method is motivated in the first paragraph. 
Here, all polarization crosses are combined in one point. The correlation between the 
grains is realized by a Voigt approximation. So, the macroscopic stress and strain of a 
macroscopic point is a volume average (Gross et. al. (2007)) 
 
 

s ij = 1

V
s ij xl( )dV ,

V

ò ekl = 1

V
ekl xi( )dV

V

ò . (8) 

 
Eq. (8) shows the volume average for the macroscopic stress and strain. So, the 
macroscopic reversible strain is the result of the first constitutive law in Eq. (3): 
 
 ekl

tot -ekl
sp = Cijkl

-1

s ij + elij El( ) . (9) 
 
Here, Cijkl , elij  and El  are the volume averages of the microscopic quantities. For 
a discrete number of grains k =1,… ,M  the volume integration is replaced by a 
summation. The averages of the material constants thus are given as 
 
 

Cijkl = 1

M
Cijkl

(k ) , elij = 1

M
elij

(k ) , k ij = 1

M
k ij

(k )

k=1

M

å
k=1

M

å
k=1

M

å . (10) 
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Likewise, the electric field in Eq. (9) is averaged according to 
 

El = 1

M
El

(k )

k=1

M

å . (11) 

 
Following a generalized Voigt approximation, the electric field is assumed to be 
constant in each grain. So, El  is equal to El . The interpretation of Eq. (9) leads to the 
fact, that we have a constant state of strain in every grain k. Eq. (9) in association with 
Eq. (3) gives us the residual stress of grain k:  
 
 s ij

k( ) =Cijkl
(k ) ekl

tot -ekl
sp -elij

(k )El . (12) 
 
Eq. (12), in connection with Eq. (7), yields the dissipative energy of grain k. Eqs. (9) and 
(12) provoke an interaction between the grains due to the switching induced residual 
stresses. An iterative procedure is required seeking an equilibrium for the domain 
configuration under external and residual loads. 
 
 
3. NUMERICAL INVESTIGATION AND DISCUSSION 
 
     This paragraph deals with the numerical simulation of switching phenomena based 
on the model outlined above. At first we show the results of electric displacement Di, 
total strain ekl

tot  and stress s ij
 for a single grain. Here, we focus on different boundary 

conditions and their influence on the dissipative energy in Eq. (7). Then, we present the 
results for a polycrystalline system with arbitrarily orientations but without any 
interactions. Finally, we highlight some results of numerical investigations accounting 
for grain interaction. The material, which is modeled in this paragraph, is barium 
titanate (BaTiO3). The applied material constants shown in the appendix. 
 
     3.1 Boundary conditions 
     For the numerical investigation we consider two boundary conditions (Fig. 1). 
Generally, the uniaxial strain assumption is applied. The first boundary condition (a) is a 
free rod (left sketch in Fig. 1). Our second boundary condition (b) is a clamped rod 
(right sketch in Fig. 1).  
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Fig. 1 Boundary conditions, single crystal (SC) and polycrystalline (PC) models 

 

So, there are two different variants to determine the reversible strain which are shown 
in the following equations: 
 
 

(a) s11 = 0 Þ ekl
tot -ekl

sp = ekl
rev =Cijkl

-1elijEl

(b) ekl
tot = 0 Þ ekl

rev = -ekl
sp

 (13) 

 
The applied electric field is a piecewise-linear function. All simulations start with an 
unpoled material, i.e. v0

(n) = 0,25 for n =1,… , 4. 
 
     3.2 Numerical simulation for a single grain 
     In the following section we present the results of the numerical simulation for a 
single grain with boundary conditions (a) and (b). The polarization cross is aligned with 
the global coordinate system, see Fig. 1. 
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Fig. 2 Electric displacement vs. electric field for boundary conditions (a) and (b) 

 

     Fig. 2 shows the x1
-coordinate of electric displacement and remanent polarization 

vs. electric field for the boundary conditions (a) and (b). First, we look at the results of 
boundary condition (a). It is obvious that domains switch at E1 = EC  and E1 = 2EC . 
These electric fields are consistent with Eq. (7) taking into account boundary condition 
(a). Because of the given boundary condition we have a full polarization in x1

-direction. 
 
     Looking at the results of boundary condition (b) we can see that the domains in 
negative x1

-direction switch at E1 = EC . This behavior is also consistent with Eq. (5) and 
equal to the behavior of boundary condition (a). In contrast to boundary condition (a), 
the domains in x2

-direction do not switch completely because of the resulting stresses, 
see Eq. (1), (5) and (10). The resulting stresses stop the switching process. So, it is 
necessary to increase the electric field and check the switching criteria again. Further, 
we can see that the domains in x2

-direction switch back into their initial position when 
the electric field is reduced. The same behavior of electric displacement and remanent 
polarization is observed for a negative electric field. 
 
In Fig. 3 the results for total strain and stress vs. electric field are presented to confirm 
the results just discussed. 
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Fig. 3 Total strain and stress vs. electric field for boundary conditions (a) and (b) 

 
     3.3 Numerical simulation for polycrystal without grain interaction 
     In this section we present the results for grains without interaction. Here, five grains 
with different orientation are considered. For this simulation, only boundary condition (a) 

is investigated. In the past section, boundary condition (b) has been established to 
show the influence of stresses in conjunction with 90° switching processes. With 
respect to the interaction of grains a similar behavior is expected, however now due to 
residual stresses. 
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Fig. 4 Electric displacement and strain vs. electric field for different grains 

 

     Fig. 4 presents the results of the numerical simulation with five differently orientated 
polarizations crosses. In general, the orientations are random. Due to the limited 
number, the angles have been chosen explicitly. The presented results are reasonable 
and are in accordance with the dissipative energy in Eq. (5). 
 
     3.4 Residual stresses due to grain interaction 
     The last part of this paragraph deals with the numerical simulation of residual 
stresses. These are essential for the macroscopic constitutive behavior. Together with 
external loads they control domain wall motion and are responsible for the smoothness 
of hysteresis loops as observed in experiments. Although the boundary condition and 
balance equations imply an uniaxial field problem, residual stresses are those of a 
plane problem, i.e. s11

,s12
 and s 22

 are non-zero. 
 
Now, ten grains with arbitrary angles are considered. For this numerical simulation we 
have chosen boundary condition (a). That means, that s ij

 in Eq. (9) is equal to zero. 

In Fig. 5 the results for residual s ij

(k )  and average stresses s ij
 are presented. The 

latter have been calculated from all s ij

(k ) for verification. 
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Fig. 5 Residual stress components vs. electric field for ten grains in a polycrystalline 

ferroelectric 

 
Looking at the components of the stress tensor, it is obvious that some grains exhibit a 
positive (tensile) and some a negative (compression) residual stress. The average 
stress s ij

 however, which is defined by 
 
 

s ij = 1

M
s ij

(k )

k=1

M

å , (14) 

 
is equal to zero for each component of the stress tensor. This behavior agrees with our 
chosen boundary condition. 
 
 

4. CLOSURE 
 
     The goal of this paper was to present a micromechanically and physically motivated 
nonlinear constitutive model for ferroelectric materials in connection with an approach, 
which can simulate the material behavior without having to apply a discretization 
scheme. The method is applied to single grains as well as polycrystalline systems. 
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5. APPENDIX 
 
     Transversal isotropy with poling into the positive x1

-direction: 
 

Cpq =

C33 C13 C13 0 0 0

C13 C11 C12 0 0 0

C13 C12 C11 0 0 0

0 0 0
C11 -C12

2
0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú

,

ekp =

e33 e31 e31 0 0 0

0 0 0 0 0 e15

0 0 0 0 e15 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

,

k ij =

k33 0 0

0 k11 0

0 0 k11

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

.

 

 
     Transversal isotropy with poling into the positive x2

-direction: 
 

Cpq =

C11 C13 C12 0 0 0

C13 C33 C13 0 0 0

C12 C13 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0
C11 -C12

2
0

0 0 0 0 0 C44

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú

,

ekp =

0 0 0 0 0 e15

e31 e33 e31 0 0 0

0 0 0 e15 0 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

,

k ij =

k11 0 0

0 k33 0

0 0 k11

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

.
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     Material constants and other used parameters of barium titanate (Jaffe et. al. 
(1971)): 
 

C11 =16,6×1010Nm-2 ; C12 = 7,66×1010Nm-2 ; C13 = 7, 75×1010Nm-2

C33 =16,2×1010Nm-2 ; C44 = 4,29×1010Nm-2

e15 =11,6Cm-2 ; e31 = -4, 4Cm-2 ; e33 =18,6Cm-2

k11 =11,16×10-9C(Vm)-1 ; k33 =12,57×10-9C(Vm)-1

eD = 4,5×10-3 ; P0 = 0,26Cm-2 ; EC = 2,0×105Vm-1
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