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shear layer interaction). For the plain cylinders, while CPf distributions of the upstream 

cylinder resembles that of the single cylinder, CPf is very large on the lower surface (  

200- 320) of the downstream cylinder, due to the incoming vortices from the upstream 

cylinder (Lee & Smith, 1991; Rockwell, 1998). The flow structure corresponds to that 

presented in Fig. 6(c). For the tripped cylinders, the upstream cylinder undergoes very 

small magnitude of CPf, having very similar CPf distribution to that for single tripped 

cylinder (Fig. 2b). CPf on the downstream cylinder is also small. A slightly increased CPf 

at   200- 330 for the tripped downstream cylinder is due to the upstream cylinder 

wake disturbance. The observation suggests that the tripped wires have effectively 

suppressed alternating sheddings from both cylinders. At  = 10, P* = 2.6 where CDf is 

the largest for the plain cylinders, CPf distributions (not shown) revealed that a large 

fluctuation in pressure occurring on the front surface of the downstream cylinder results 

in the large magnitude of CDf. The large fluctuation in pressure suppressed for the 

tripped cylinders.  

6. CONCLUSIONS 

An investigation is conducted on the flow interference between two tripped 

identical cylinders at  = 0 ~ 180 and P* = 0.1 ~ 5. Two tripwires, each of diameter 0.1D, 

were attached on each cylinder at azimuthal angle  = 30. CD, CDf and CLf on the 

tripped cylinders were measured and compared with those on the plain cylinders at Re = 

5.5  104. Pressure measurements on the surface of the cylinder were also carried out.  

CD, CDf and CLf of the plain cylinders are strong function of  and P*, connected to 

interaction between boundary layer and cylinder, shear-layer/wake and cylinder, shear 

layer and shear layer, vortex and cylinder, vortex and shear layer, and vortex and vortex. 

CD, CDf and CLf are very large for the interactions where vortex is involved (i.e., vortex 

and cylinder, vortex and shear layer, and vortex and vortex). The addition of tripwires 

suppresses the vortex sheddings from the cylinders, resulting in the suppression of the 

interactions involving vortex. The large magnitudes of CD, CDf and CLf thus reduce to 

very small values. While the plain cylinders intervene each other extensively, the tripped 

cylinders do not; hence CD, CDf  and CLf of the tripped cylinders are almost insensitive to 

P* and . Compared to the plain cylinders, the tripped cylinders experience smaller 

forces in the entire P* and  ranges examined. While in most of the region the 

suppressions in CD, CDf and CLf are about 58%, 65% and 85%, respectively, maximum 

suppressions are 60%, 80% and 90%, respectively.   

For the case of the plain cylinders, vortex and shear layer interaction and vortex 



and cylinder interaction result in a large CPf respectively on the lower side and front 

surface of the downstream cylinder. CPf distribution of the upstream cylinder is 

comparable to that of a single cylinder. The shear-layer/wake and cylinder interaction 

brings about a small CPf on the upstream cylinder and a high CPf on the downstream 

cylinder. On the other hand, both tripped cylinders for the all interactions undergo very 

small CPf over the whole surface.  
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