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Table 2 Wake regions of AR1 and unit-ARs 

 
AR1 

Hexa 
unit-AR 

Rect unit-
AR 

Pyra unit-
AR 

Wake 
region 

Volume (m3) 2.9 (Vw)
140 

(48.1Vw) 
119.7 

(41.1Vw) 
88.4 

(30.4Vw) 

Ave. velocity (m/s) -0.33 -0.21 -0.41 -0.23 

 

Table 3 Upwelling region of AR1 and unit-ARs 

 
AR1 

Hexa  
unit-AR 

Rect  
unit-AR 

Pyra  
unit-AR 

Upwelling 
region 

Volume (m3) 
24.9 
(Vu) 

1276.7 
(60.3Vu)

1969.5 
(93.0Vu) 

1574.6 
(74.4Vu)

Ave. velocity (m/s) 0.22 0.25 0.29 0.24 

 

In addition, the wake regions of the placement models were characterized by their 
horizontal profiles to investigate the planar distributions. The results show that Pyra has 
a unique characteristic showing that 77.04% of the wake volume concentrates on a 
sub-region near the seabed, which is beneficial to demersal fish. 

Similarly, it is found that the upwelling volume in AR1 was 24.9m3 (Vu, the 
upwelling volume of AR1) and the average velocity was 0.22m/s. In addition, it is found 
that the upwelling volumes of Hexa, Rect, and Pyra unit-ARs were 1276.7, 1969.5, 
1574.6m3, respectively. Each upwelling volume is 60.3, 93.0, or 74.4 times the 
corresponding the upwelling volume of AR1 i.e., Vu. The average upwelling velocity is 
0.25 (Hexa), 0.29 (Rect), or 0.24m/s (Pyra). The results are shown in Table 3. 

 

4. CONCLUSIONS 

In this study, in order to quantitatively evaluate flow characteristics (wake region 
and upwelling region) of unit ARs, three 3-D placement models (Hexa, Rect, and Pyra) 
were investigated. The element-based finite volume method was used for numerical 
flow analyses, by facilitating ANSYS-CFX, a general purpose CFD software package. 
From the flow analyses, the following conclusions were found. 

First, the AR1 has the wake region quantified by the wake volume (Vw) of 2.9m3. 
In addition, the units have the wake volumes of 140 (Hexa), 119.7 (Rect), and 88.4m3 
(Pyra), which are 48.1, 41.1, and 30.4 times the reference wake volume (Vw). This 
result shows that Hexa has the most desirable in terms of the size of wake volume, 
followed by Rect. In terms of the average recirculating flow velocity, it is found the 



  

sequence: Rect (0.41m/s), Pyra (0.23m/s), and Hexa (0.21m/s). Thus, considering the 
quality of recirculating zone or wake region (a so-called tranquility), Hexa has a better 
quality. However, it should be noted here that the average counter velocity (0.41m/s, 
the highest average among three placement models) of Rect is about 20% of the inlet 
velocity (2m/s); hence, the tranquility of the corresponding wake region is likely secured. 
From the observations above, it is shown that each placement model has different 
wake volume up to 58%. In overall, Hexa unit-AR is the most advantageous based on 
wake volume. In addition, the wake regions of the placement models were 
characterized by their horizontal profiles to investigate the planar distributions. The 
results show that Pyra has a unique characteristic showing that 77.04% of the wake 
volume concentrates on a sub-region near the seabed, which is beneficial to demersal 
fish. 

Second, the AR1 has the upwelling region quantified by the upwelling volume (Vu) 
of 24.9m3. In addition, the units have the upwelling volumes of 1969.5 (Rect), 1574.6 
(Pyra), and 1276.7m3 (Hexa), which are 93.0, 74.4, and 60.3 times the reference 
upwelling volume (Vu). This result shows that Rect has the most desirable in terms of 
the size of upwelling volume, followed by Hexa. In terms of the average upwelling flow 
velocity, it is found the sequence: Rect (0.29m/s), Hexa (0.25m/s), and Pyra (0.24m/s). 
Thus, considering the quality of upwelling zone (a so-called tranquility), there is no 
considerable difference. It should be noted here that the upwelling region is defined by 
5% of and more than the inlet velocity (2m/s). Thus, the average velocities are between 
5% and 14.5% of the reference velocity. From the observations above, it is shown that 
each placement model has different upwelling volume up to 54%. In overall, Rect unit-
AR is the most advantageous based on upwelling volume.  
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