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ABSTRACT 
 

In this paper, we present the excellent modeling capability of the continuum 
mechanics based beam elements. Since the elements have embedded cross-sectional 
discretization, individual handling of cross-sectional elements is enabled. Due to this 
novel feature, many complicated beam structures such as beams with discontinuously 
varying cross-sections, arbitrary composite cross-sections, and functionally graded 
cross-sections, and layered beams with incomplete shear connections can be easily 
analyzed. Furthermore, the geometric and material nonlinear analysis is also available, 
because the beam elements are formulated from continuum mechanics. The various 
applications of the continuum mechanics based beam elements are demonstrated 
through representative numerical examples. 
 
 
1. INTRODUCTION 
 

Beam elements are abundantly used for analysis of various scientific and 
engineering structures. Recently, demands of beam elements with high modeling 
capability is increasing due to the advent of new and complex applications. A number of 
studies have been presented to improve the modeling and analysis capabilities of 
beam elements. In particular, the continuum mechanics based beam elements can 
represent highly coupled mechanical behaviors under complicated 3D geometries. The 
element can also provide ability of individual handling of cross-sectional elements. In 
this paper, the brief concept of the continuum mechanics based beam elements and 
their various applications are introduced. 
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2. Continuum mechanics based beam element 
 

We here provide a brief formulation of the continuum mechanics based beam 
elements. The detailed formulation is well illustrated in Yoon et. al. 2012 and Yoon and 
Lee 2014. The geometry interpolation of the entire beam is obtained by a material 
position of the sub-beam element m  (see Fig. 1), 
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From the geometry interpolation in Eq. (1), the displacement interpolation of the 

sub-beam m  is derived as 
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Fig. 1 The concept of the continuum mechanics based beam finite element with cross-
sectional discretization. 



  

The continuum mechanics based beam elements can be easily enriched by using 
appropriate displacement functions with the corresponding DOFs to obtain a 
generalized displacement field as 
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in which )(m

gu  is the generalized displacement field and )(m
au  is the additional 

displacement field such as warping displacements, slip displacements, and 
displacements for cross-sectional distortions. Some examples of the enriched beam 
formulation are introduced with its numerical applications in the following section. 
 
 
3. Application of the continuum mechanics based beam elements  
 

In this section, we demonstrate the performance and modeling capability of the 
continuum mechanics based beam elements through various applications.  
 
3.1 Discontinuously varying beam problem 
 

A discontinuously varying beam that consists of three different thin-walled cross-
sections illustrated in Fig. 2, is considered. The additional displacement field is 
employed as 
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where )(m

kf  is the free warping function, and )(m
Lf  and )(m

Rf  is interface warping 

functions. The detailed derivation is well illustrated in Yoon and Lee 2014. Angle of 
twist and displacement v  along the beam length is shown in Fig. 3. The numerical 
results show good agreement with the reference solution obtained from the 
corresponding shell element model.  
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Fig. 2 A discontinuously varying beam with three different thin-walled cross-sections.
(Yoon and Lee 2014) 
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Fig. 3 Angle of twist and displacement v  along the beam length (Yoon and Lee 
2014) 

 

 
 
3.2 Three-layer beam problem 
 

The slip displacement field )(m
su  is included into the basic beam displacement as 
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in which ),()( tsf mi

k  are the slip functions and i
kα  are the slip DOFs. There are two slip 

functions, which is the bending slip function bx  and the axial slip function ax . The two 
slip functions can be calculated as follows. 
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where id  is the length between the centroid of sub-beam 1i  and the centroid of sub-
beam i , iE  is Young’s modulus of the i th sub-beam and iA  is cross-sectional area 
of the i th sub-beam. The constant slip modulus sK  is employed to model the partial 
interaction effect between layers and only the load-slip curve is considered to be linear 
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As a simple verification, the three-layer T-section simply supported beam as shown in 
Fig. 4, referred previously by Chui and Barclay 1998, is analyzed and is compared with 
its reference solution. The z -directional concentrated load zP  is applied at the mid-

span of the beam. Slip moduli at the interlayer are MPa111 K  and MPa62 K  and 

Young’s moduli of layer are MPa000,181 E , MPa000,62 E and MPa000,103 E . 
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Fig. 4 Three-layer T-section simple supported beam 
 
 
The layered-beam is modeled by 10 beam elements with cross-section discretized by 3 
sub-beam elements. The reference solutions in Chui and Barclay 1998 are obtained by 
8-node plane stress elements in ANSYS (Swanson Analysis Systems Inc. 1994). The 
deflection curves along the beam length is depicted in Fig. 5. The numerical results 
show good agreement with the reference solution obtained from shell element model. 
 
 
 

 
Fig. 5 Deflection curves along the beam length 

 
 



  

4. Conclusions  
 

In this paper, the concept of the basic continuum mechanics based beam 
formulation and the enriched beam formulation including additional displacement fields 
are introduced. Afterward, several numerical applications are illustrated to verify the 
enriched beam formulations. Discontinuously varying beam and layered beam with 
deformable shear connection are solved with the corresponding additional 
displacement fields. As a result, the numerical results are presented graphically and 
good agreement with the reference solution can be found. Clearly, the continuum 
mechanics based beam element shows its excellent modeling capability. 
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