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4.3.2 Rate of earthquake occurrence 
 
The number of expected earthquakes varies from site to site and is available at the 

USGS website (2013). The average number of earthquakes in one year is about 8 for 
San Francisco, 2 for Seattle, 0.5 for Memphis (one every 2 years), 0.4 for New York 

(one every 2.5 years), and 910-3 for St. Paul (one every 111 years) . 
 
4.3.3 Natural period of IABs 
 
The natural period of an IAB is related to the type of bridge structure, type of bridge 

foundation, the characteristics of the used materials, the characteristics of bridge 
geometry, the interaction between soil and structure (SSI), etc. As the considered IAB 
in this study included the effects of SSI, based on published researches (Chopra et al 
2000), a bias of 0.9 and a COV of 20% using a normal distribution was used for the 
natural period of the IAB. 

 
4.3.4 Mass Applied 
 
To account for uncertainties associated with the mass applied on the IAB’s members 

(considering weight alone) a bias of 1.05 and a COV of 5% using a normal distribution 
were used (Ellingwood et al. 1980 and Nowak1999). 

 

4.3.5 Seismic Response Coefficient 
 
The design response spectrum proposed by AASHTO LRFD (2012) was used in this 

paper. These design spectra are based on the USGS mapping project (2013). For 
considering uncertainties associated with these spectra, the statistics provided by 
Frankel et al. (1997) was used. They found that for all sites inside USA, the mean value 
of spectral accelerations are very close to the design spectral accelerations; so a bias 
of 1.0 can be used. Also, for all sites, COV depends on the number of observed 
earthquakes at which, the COV is low for sites with high frequency of earthquakes and 
for sites with low frequency the COV is high. Therefore, for San Francisco, the COV is 
about 15%, for Seattle and Memphis is about 25%, for New York is about 30% and for 
St. Paul is about 40%. For this variable a normal distribution is used. 

 
4.3.6 Modeling factor 
 

Modeling factor was used to take into account for the uncertainties produced during the 
dynamic analysis process. A bias of 1 and a COV of 20% using a normal distribution 
were used for this variable (Ellingwood et al. 1980). 

 
4.3.7 Reliability Equation for Earthquake Load 
 
Using the presented information, the equivalent seismic load applied on the IAB is 

defined as follows: 
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where, FEq is the equivalent applied load, eq is the modeling factor, C' is the response 
spectrum modeling parameter, A is the maximum 75-year peak ground acceleration at 

the site, Sa is the calculated spectral acceleration using the IAB’s period, T, and period 
modeling factor, t', W is the weight of system and Rm is the response modification factor 
which is equal to 1.0 for IAB’s pile (AASHTO LRFD (2012). The statistics for random 
variables used in Eq. (13) are summarized in Table 3. 
 
 
5. Reliability Analysis of the Integral Abutment Bridge 

 
In this section, the reliability analysis performs for a basic IAB designed to satisfy the 

current AASHTO LRFD specifications for evaluating the safety level under seismic load. 

For this purpose by using the Monte Carlo Method the reliability index, , is calculated 
for considered bridge subjected to earthquake load. Geometric and structural 
properties of the basic IAB are described below. 

 
Table 3 Earthquake load related statistics 

Variable Bias COV 
Distribution 

type 
Reference 

Earthquake Modeling factor, eq 1.0 20% Normal (Ellingwood et al.1980) 

spectrum 
modeling 
factor, C' 

San Francisco 

Seattle 

Memphis 

New York 

St. Paul 
 

1.0 

15% 

25% 

25% 

30% 

40% 
 

Normal (Frankel et al. 1997) 

75-year PGA, A 

San Francisco 

Seattle 

Memphis 

New York 

St. Paul 
 

from 
Fig. 
1 

from 
Fig. 
1 

from Fig. 1 (USGS 2013) 

Period modeling factor, t' 0.9 20% Normal (Chopra et al 2000) 

Weight, W 1.05 5% Normal (Ellingwood et al.1980) 

 
 

5.1 Geometric an Structural Properties of the Basic IAB 
 
The considered IAB in this study is a one-span 40 m IAB having the longitudinal 

section as shown in Fig. 2. The superstructure of the bridge is composed of concrete 
slab whit 20 cm thickness and steel beams at 2 m spacing. Each abutment of this 
bridge has 7 m height and 1 m wall thickness and supported on a single row of steel H 
piles with 12 m length at 1 m spacing. The section properties of deck girder and piles 
are given in Table 5. 

The abutments backfill soil is assumed to be dense cohesion-less soil with 30° angle 
of internal friction and a unit weight of 16.72 kN/m3. 



 
 

 
Fig. 2 Longitudinal section of the IAB 

 

 
Table 5 Steel sections properties 

Section Size 
Height 
(cm) 

Flange 
width 
(cm) 

Flange 
thickness 

(cm) 

Web 
thickness 

(cm) 

Girder W 1000975 111 43 9 5 

Piles 

San 
Francisco 

H 3003001515 30 30 1.5 1.5 

Seattle H 3003001212 30 30 1.2 1.2 

Memphis H250250914 25 25 1.4 0.9 

New York H2002001212 20 20 1.2 1.2 

St. Paul H200200812 20 20 1.2 0.8 

 

 
As described earlier, the piles moment and shear force are affected the most by the 

earthquake load, thus, in this study bending moment and shearing failure limit state of 
the IAB piles at point A (where the pile connect to abutment) were considered for 
reliability analysis. The requirement moment and shear capacity was calculated to 
satisfy the current AASHTO LRFD specifications. The free body diagram of the basic 
IAB pile under applied load is shown Fig. 2. where, FDL = 198.16 kN is the permanent 
weight of superstructure, MDL = 1.32 MN is the moment caused by the permanent 
weight of superstructure, Pa = 272.82 kN is the static active backfill force and acts on 

the H/3 from the bottom of abutment, Pae is the seismic active backfill force based on 
Mononobe, et al. 1929 and Okabe 1926, and for San Francisco, Seattle, Memphis is 
equal to 819.33 kN, for New York is equal to 166.28 kN and for St. Paul is equal to 
17.27 kN. This load acts on the 0.6 H from the bottom of abutment (Seed, H. et al. 
1970), H = 7 m is the abutment height, e1 = 0.25 m is the deal load eccentricity from the 
point A, FEQ is the equivalent earthquake force - described below - transferred from the 
IAB deck and acts on the distance, f = 0.25 m from the bottom of abutment. 



 

 
Fig. 3 Free body diagram of IAB pile, dominant failure is bending at point A 

 

 
The equivalent internal earthquake force, FEQ , by Using the nominal natural period 

of the    T = 0.41s, the soil of type D and the calculated spectra acceleration for 1000-
year return period ( 7% probability of exceedance in 75 years) is obtained as follows: 
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where Sa is the spectral acceleration, W is the weight of structure and Rm is the 
response modification factor. Based on AASHTO LRFD (2012) by Using a modification 
factor Rm = 1 the equivalent earthquake is equal to 307.54 kN for San Francisco site, 
210.52 kN for Seattle,  176.38 kN for Memphis, 44.05 kN for New York and 10.51 kN 
for St. Paul.  

As the dominant AASHTO LRFD (2012) load combination to design the considered 
pile is the Extreme Event I combination at point A (see Fig. 3), the design equation 
used for calculating the nominal moment capacity is as follows: 
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where  is the resistance factor which for bending is equal to 0.9, MDL = 1.37 MN-m           

(= 0.198  0.25 + 1.32) is the total moment caused by permanent weight of 

superstructure, MPa = 0.64 MN-m (= 0.273 MN  2.333 m) is the moment caused by 

static active backfill force, MPae is the moment caused by seismic active backfill force 

and is equal to 3.44 MN-m (= 0.819 MN  0.6  7 m) for San Francisco, Seattle, 
Memphis, equal to 0.698 MN-m for New York and equal to 0.0725 MN-m for St. Paul. 
MEQ is the equivalent earthquake moment that equal to 1.85 MN-m for San Francisco, 
1.26 MN-m for Seattle, 1.058 MN-m for Memphis, 0.264 MN-m for New York and 0.063 
MN-m for St. Paul. 

Based on the Extreme Event I combination at point A (see Fig. 3), the design 
equation used for calculating the nominal sheer capacity is as follows: 



EQPPDLreq VVVVV
aea
 5.125.1                       (16) 

where,  is the resistance factor which for shearing is equal to 0.9, VDL is the total shear 
caused by permanent weight of superstructure and usual 0, VPa = 0.272 MN is the 

shear caused by static active backfill force, VPae is the shear caused by seismic active 
backfill force and is equal to 0.819 MN for San Francisco, Seattle, Memphis, equal to 
0.166 MN for New York and equal to 0.0172 MN for St. Paul. VEQ is the equivalent 
earthquake Shear that equal to 0.308 MN for San Francisco, 0.211 MN for Seattle, 
0.176 MN for Memphis, 0.044 MN for New York and 0.0105 MN for St. Paul. 

Using Eq. (15) the requirement moment capacity, Mreq is equal to 8.84 MN-m for San 
Francisco, 8.18 MN-m for Seattle, 7.96 MN-m for Memphis, 4.024 MN-m for New York 
and 3.12 MN-m for St. Paul. Using Eq. (16) the requirement sheer capacity, Vreq is 
equal to 1.706 MN for San Francisco, 1.6 MN for Seattle, 1.56 MN-m for Memphis, 0.69 
MN for New York and 0.49 MN for St. Paul. 

 
 
5.2 Reliability Analysis Under seismic load 
 
The reliability analysis of the IAB pile is performed using the models described in 

section 4 and the free body diagram shown in Fig. 3. Referring to Fig. 3 the failure 
function for pile bending can be represented by following equation: 
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where MPile is the pile bending moment capacity, MDL is the total Moment caused by 
superstructure weight, FEQ is the equivalent earthquake load transferred from 

superstructure defined by Eq. (13),   is the specific weight of backfill soil, Kae is the 
seismic active earth pressure coefficient (Mononobe, et al. 1929 and Okabe 1926), H = 
7 m is the abutment height, b = 2 m is the abutment wide corresponded to each 

considered pile,  f = 6 m is the distance earthquake load from point A and cyc is the 
model of the effect of cyclic loading on the pile. 

Based on Figure 4, the failure equation for pile sheering can be represented as 
follows: 
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where VPile is the pile sheering capacity. 
Referring to Eqs. (16)-(17), failure occurs when ZM or ZV are less than zero. All 

variables in Eqs. (16)-(17) are considered random expect for abutment height, H, 
abutment wide corresponded to each pile, b and distance earthquake load from point A, 
f. The statistical models used to describe the random variables are provided in tables 1, 
2 and 3. In these failures limit state only earthquake load composed of time-depended 
and time-in depended random variables. The reliability analysis of the IAB pile was 
performed for five sites by using Monte Carlo simulation method. Figs. 4-5 show the 
reliability index for the bending and shearing failure limit states for each of five sites as 
a function of pile moment and sheer capacity, respectively. The abscissa of the plot is 



normalized such that a ratio of 1.0 indicates that the bridge is designed to exactly 
satisfy the AASHT LRFD (2012) specifications requirements. Fig. 4 shows that the 
AASHTO LRFD (2012) specifications using a nominal response modification factor Rm 

= 1 for pile bending limit state will produce a reliability index,  , between 2.12 and 2.57. 
The average from the five sites is equal to 2.28. Fig. 5 shows that for pile shearing limit 
state the average reliability index for five sites is 2.33 with a minimum index equal to 
2.09 and a maximum value equal 2.68. 

 
 

 
Fig. 4 Reliability index for bending of considered IAB's pile under earthquake loads 

 

Fig. 5 Reliability index for shearing of considered IAB's pile under earthquake loads 
 

 



9. Conclusion 
 

Integral abutment bridges (IABs) are jointless bridges that by eliminating the 
expansion joints have many advantages over conventional bridges. Duo to the integrity 
of these bridges, among the loads act on these bridges, seismic loads have major role 
to design of these bridges and readily transferred to substructure and affect the design 
of these components. As, all developed bridge design codes have been primarily 
defined for conventional bridges with expansion joints and the behavior of the IABs is 
differ complete from conventional bridges, the evaluating the safety level of IABs 
designed by these codes is important. In this paper, by concerning the safety of the pile 
foundation of an IAB designed by AASHTO LRFD bridge designed code under seismic 
load, the safety level of IABs under Seismic loads has been evaluated. By using Monte 
Carlo Reliability analysis method, the reliability indexes for the bridge's 75 years design 
life have been calculated. The Reliability indexes were calculated for bending and 
shearing limit states of the pile foundation. For five considered earthquake sites, the 
calculated average reliability index for pile bending and shearing were found to be 
equal 2.28 and 2.33, respectively. These indexes are in the range of 2 to 4 that is 
usually specified to failure of a single component for different structural application to 
express structural risk by many code-writers. 
 
 
References 
 
Tsang NCM, England GL. (2002), “Soil/structure interaction of integral bridge with full 

height abutments”, Proceedings of the 15th ASCE Engineering Mechanics 
Conference, Columbia University, NY. 

Dicleli M, Albhaisi SM. (2004), “Effect of cyclic thermal loading on the performance of 
steel H-piles in integral bridges with stub-abutments”, J Constructional Steel 
Research, 60(2): 161-182. 

Kim W and Laman JA. (2010), “Integral abutment bridge response under thermal 
loading”, Engineering Structures, 32: 1495-1508. 

Tegos I, Sextos A, Mitoulis S, Tsitotas M. (2005), “Contribution to the improvement of 
seismic performance of integral Bridges”, Proc 4th European Workshop on the 
Seismic Behavior of Irregular and Complex Structures; Thessaloniki, Greece. 

Itani A, Pekcan G. (2011), “Seismic performance of steel plate girder bridges with 
integral abutments”, Publication No. FHWA-HIF-11-043. 

Frosch, RJ, Kreger ME, Talbott AM. (2009), “Earthquake resistance of integral 
abutment bridges”, Publication FHWA/IN/JTRP-2008/11. Joint Transportation 
Research Program, Indiana Department of Transportation and Purdue University, 
West Lafayette, Indiana. Doi: 10.5703/1288284313448  

Maleki S, Mahjoubi S. (2010), “A new approach for estimating the seismic soil pressure 
on retaining walls”, J Scientia Iranica., 17(4): 273-284. 

Mononobe, N., and Matsue, H. (1929), “On the determination of earth pressures during 
earthquakes”, Proc., World Engrg. Conf., 9, 176. 

Kim W. (2008), “Load and resistance factor for integral abutment bridges”, Ph.D. 
dissertation, PA: Pennsylvania State University, University Park. 



Design code (2012), AASHTO LRFD Bridge Design Specifications, American 
Association of State Highway and Transportation Officials. Washington (DC). 

Ghosn, M., Moses, F., and Wang, J. (2003), “Design of highway Bridges for Extreme 
Events”, NCHRP Report 489, Transportation Research Board of the National 
Academics, Washington, DC. 

U.S. Geological Survey Website, (2013) USGS, 
http://earthquake.usgs.gov/earthquakes. 

Lemaire, Maurice. (2009), Structural Reliability, Published by ISTE Ltd and John Wiely 
& Sons, Inc., London SW19 4EU, UK and Hobokon, NJ 07030, USA. 

Nowak, A.S. (1999), “Calibration of LRFD bridge design code”, NCHRP Report 368, 
Transportation Research Board of the National Academies, Washington, DC. 

Ellingwood B, Galambos, T.V., MacGregor, J.G., and Comell, C.A. (1980), 
“Development of a probability based load criterion for American national standard 
A58”, National bureau of standards, Washington, DC. 

Galambos, T. V. and Ravindra, M. K. (1978), “Properties of steel for use in LRFD”, 
Journal of the Structural Division, ASCE, 104(9), 1459-1468. 

Becker, D.E. (1996), 18th Canadian Geotechnical Colloquium: “Limit States Design for 
Foundations”. Part II Development for the National Building Code of Canada, 
Canadian Geotechnical Journal, Vol. 33; pp. 984–1007. 

Frankel, A., Harmsen, S., Mueller, C., Barnhard, T., Leyendeker, E.V., Perkins, D., 
Hanson, S., Dickrnan, N., and Hopper, M. (1997), USGS National Seismic Hazard 
Maps: “Uniform Hazard Spectra, De-aggregation, and Uncertainty”, Proceedings of 
FHWA/ NCEER  Workshop on the National Representation of Seismic Ground 
Motion for New and Existing Highway Facilities, NCEER Technical Report 97-0010, 
SUNY Buffalo, NY; pp. 39–73. 

Chopra, A.K., and Goel, R.K. (2000), “Building period formulas for estimating seismic 
displacements”, EERI Earthquake Spectra, Vol. 16, No. 2. 

Okabe, S. (1926), “General Theory of Earth Pressure”, J. Japanese Soc. Of Civ. Engrs., 
Tokyo, 12(1). 

Seed, H. B., and Whitman, R. V. (1970), “Design of Earth Retaining Structures for 
Dynamic Loads”, Proc., the specialty Conference on Lateral Stresses in the Ground 
and design of Earth Retaining Structures, ASCE; 47-103. 

 

http://earthquake.usgs.gov/earthquakes

