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ABSTRACT 
 
     In this paper, we introduce our recent studies on the reduction methods of structural 
finite element models, which include error estimators for the classical reduction 
methods, high-performance dynamic reduction methods, and the automated static 
condensation method. We focus on developing numerical procedures to provide 
significantly accurate reduced models with computational efficiency. Using several 
large practical engineering problems, the performance of the proposed methods are 
demonstrated in terms of its solution accuracy and computational efficiency. We here 
summarize the related formulations and numerical results published already. 
 
 
1. INTRODUCTION 
 

Model reduction methods have been widely used to reduce the degrees of freedom 
(DOFs) of a large finite element model. For a long time, significant efforts have been 
made to develop more effective reduction methods, which provide accurate reduced 
models with computational efficiency. In this presentation, we review the results of our 
previous studies on the development of reduction methods to solve large and complex 
structural vibration and static problems. 

 
When a complicated structure consisting with various substructures is designed 

through the cooperation of different engineers, it is very expensive to deal with its finite 
element models, because frequent design modifications affecting the whole and 
component models require repeated reanalysis. The reduction methods presented here 
provides effective tools for such large structures (Boo et al 2016, 2017, Kim JH et al 
2017). 

 
In the following sections, we consider three different topics: an error estimator for 

the Craig-Bampton (CB) method (Kim JG et al 2014 and Boo et al 2016), the improved 
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dual Craig-Bampton (DCB) method (Kim JH et al 2017), and the automated static 
condensation method for local analysis of large finite element models (Boo and Oh 
2017). 
 
 
2. ERROR ESTIMATOR FOR THE CRAIG-BAMPTON METHOD 
 

For the well-known Craig-Bampton method, an accurate error estimation method 
was proposed (Kim JG et al 2014) and it was simplified for its computational efficiency 
and application to error control (Boo et al 2016). 

 

Let us consider a global finite element model partitioned into sN  substructures fixed 

to its boundary interface, see Fig. 1. In the original CB formulation, the transformation 
matrix is constructed by using only dominant substructural modes. The global 

displacement vector gu  is approximated by 
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in which 0T  and u  are the reduced CB transformation matrix and reduced generalized 

coordinate vector, respectively. d

sΦ  and 
d

sq  are the block-diagonal eigenvector matrix 

that consists of dominant substructural modes and corresponding generalized 

coordinate vector, respectively, and cΨ  is the constraint mode matrix. The overbar ( ¯ ) 

denotes the approximated quantities. 
 

 
Fig. 1 Interface handling in the CB method: (a) Partitioned structure, (b) Fixed interface 

boundary treatment (Boo et al 2016) 

 
The reduced matrices of the CB method could be obtained as 
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where gM  and gK  are the mass and stiffness matrices of a global FE model, 

respectively, and then the reduced eigenvalue problem in the CB method is given by 
 

iii )()( φΜφΚ    for Ni ,,2,1  ,                                                                            (3) 

 

where i  and i)(φ  are the approximated eigenvalues and eigenvectors, respectively, 

and N  is the number of DOFs in the reduced model. 
 
In order to accurately estimate relative eigenvalue errors in reduced models, we 

construct the enhanced transformation matrix by properly considering residual 
substructural modes, see references; Kim JG et al 2014 and Boo et al 2016, for 
detailed derivations. 

 

By using the enhanced transformation matrix 1T , the global displacement vector gu  

is approximated by 
 

uTuu 1 gg  with aTTT  01 ,                                                                               (4) 

 

in which 1T  is the enhanced transformation matrix, 0T  and aT  are the CB 

transformation matrix defined in Eq. (1), and the additional transformation matrix, 
respectively. 
 

The relative eigenvalue error i  could be approximated as 
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in which i  is the original error estimator for the i -th global mode. It can be used to 

evaluate the accuracy of the approximated eigenvalue i  without knowing the original 

eigenvalue i .  

 
To investigate the performance of the new error estimator, a cargo hold structure is 

considered (shown in Fig. 2). Detailed specifications of the structure are described in 
the reference, Boo et al 2016. The number of total DOFs is 157,368, and the global 
structure is partitioned into 36 substructures. Two different retained substructural mode 

cases, 80dN  and 290dN , are considered here. 
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Fig. 2 Cargo hold structure problem (Boo et al 2016) 

 
Fig. 3 shows the exact and estimated relative eigenvalue errors calculated by Eq. 

(5) and its simplified version (see reference, Boo et al 2016) in the two numerical cases. 
The estimating accuracy of the present error estimator are successfully verified. 

 
Its estimation accuracy and computational efficiency were tested through various 

numerical examples in previous work. Details of the result are presented in the 
reference; Kim JG et al 2014 and Boo et al 2016. 
 
 
3. IMPROVED DUAL CRAIG-BAMPTON METHOD 
 

Recently, a new component mode synthesis (CMS) method was proposed by 
improving the DCB method (Kim JH et al 2017). The new transformation matrix was 
derived by considering the second order effect of residual substructural modes, and the 
resulting additional interface coordinates in the reduced system was eliminated by 
applying the concept of SEREP (the system equivalent reduction expansion process)  
(O’Callahan et al 1989). 
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Fig. 3 Exact and estimated relative eigenvalue errors for the cargo hold structure 

problem: (a) 80dN , (b) 290dN  (Boo et al 2016) 

 

In the DCB method, a structural FE model is assembled by sN  substructures as in 

Fig. 4a. The substructures are connected through a free interface boundary   (Fig. 4b). 
Assembling the linear dynamic equations for each substructure using explicitly defined 
compatibility constraint equations by using Boolean matrix B  and Lagrange multiplier 
μ , the dynamic equilibrium equation of the original assembled FE model (see Fig. 4c) 

is constructed as 
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where M  and K  are block-diagonal mass and stiffness matrices that consist of 

substructural mass and stiffness matrices ( )(i
M  and )(i

K ), and f  is the external load 
vector. 

 

 
Fig. 4 Assemblage of substructures and interface handling in the DCB method ( 4sN ) 

(Kim JH et al 2017) 
 
The displacement and Lagrange multipliers of the original assembled FE model with 

sN  substructures are approximated as 
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in which sR  and d

sΦ  are the block-diagonal rigid body mode matrix and the matrix that 

consists of substructural dominant free interface normal modes, and α  and dq  are the 

corresponding generalized coordinate vectors. rsF  and rmF  are the matrices that consist 

of the substructural first and second order residual flexibility matrices, respectively. 
 

Using the transformation matrix 2T  in Eq. (7), the reduced system matrices and 

force vector are calculated 
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in which M , K , and f  are the reduced mass and stiffness matrices ( 22 NN  ), and the 

reduced force vector ( 12 N ), respectively. 

 
The modes related to the additional coordinates can be eliminated through a further 

reduction using SEREP. From the reduced system matrices in Eq. (8), the following 
eigenvalue problem is obtained: 
 

iii )()( φMφK  , 2,,1 Ni  ,                                                                                       (9) 

 

where i  and i)(φ  are the i -th eigenvalue and the corresponding mode vector, 

respectively. We then calculate the eigenvectors up to the 1N -th mode, where 1N  is 

the size of reduced system matrices obtained from the original DCB method. 
 
Then, the transformation matrix of the improved DCB method is further reduced 

using retained eigenvectors. 
 

ΦTT 22
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1
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and thus the new transformation matrix 2T̂  has the same size as the transformation 

matrix in the original DCB method. That is, the additional coordinate vector ψ  is 

eliminated. 
 
Finally, the resulting reduced system matrices are calculated as follows: 
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in which 2M̂ , 2K̂ , and 2f̂  are the final reduced mass, stiffness matrices, and force 

vector, respectively. Then, the size of the reduced system matrices provided by the 
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improved DCB method becomes equal to that by the original DCB method. 
 

Let us consider the rectangular plate problem with a non-matching mesh case, see 

Fig. 5b. The whole structure is an assemblage of two substructures ( 2sN ). In this 

case, the interface compatibility is considered through nodal collocation and thus the 

matrices )(i
B  are no longer Boolean, see Fig. 5c. 

 

 
Fig. 5 Rectangular plate problem: (a) Matching mesh on the interface, (b) Non-

matching mesh between neighboring substructures, (c) Interface boundary treatment 
(Kim JH et al 2017) 

 
Fig. 6 presents the relative eigenfrequency errors obtained by the original and 

improved DCB methods. In this example, five and three dominant modes are used for 
each substructure in both original and improved DCB method. The results showed that 
the improved method provides considerably more-accurate solutions for this non-
matching mesh case. 

 
An important feature of the improved DCB method lies in the fact that the accuracy 

of reduced models is remarkably improved and negative eigenvalues are avoided in 
lower modes. In the previous work (Kim JH et al 2017), through various numerical 
examples, we demonstrated accuracy and computational efficiency of the improved 
DCB method compared to the original DCB method. Details of the results are 
presented in the reference, Kim JH et al 2017. 
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Fig. 6 Relative eigenfrequency errors in the rectangular plate problem with non-

matching mesh in Fig. 7b (Kim JH et al 2017) 
 
 
4. AUTOMATED STATIC CONDENSATION METHOD 
 

We introduce an efficient new model reduction method, named the automated static 
condensation method, which is developed for the local analysis of large finite element 
models. Here, the algebraic multilevel substructuring procedure (Boo et al 2017) is 
modified appropriately, and then applied to the original static condensation method, see 
reference, Boo and Oh 2017. 

 
In the algebraic multilevel substructuring (Karypis and Kumar 1998, Boo et al 2017), 

the global matrix, which is a very sparse matrix, is automatically permuted, and 
partitioned into many submatrices. However, the stiffness terms for the local model to 
be analyzed may be scattered in the permuted matrix. Fortunately, because the node 
numbers of the local model are already known, through the re-permutation of the matrix, 
the scattered stiffness terms can be gathered intentionally. Then, we can define the 
retained substructure, which corresponds to the local model to be analyzed. The 
modified algebraic multilevel substructuring procedure is shown in Fig. 7.  
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(a) Original large sparse matrix (b) Matrix permutation and partitioning 

  
(c) Re-permutated and re-partitioned matrix (d) Substructural tree diagram 

 
Fig. 7 Modified Algebraic multilevel substructuring procedure (eight substructures with 
three substructural level, where 

r  denotes the retained substructure to be analyzed) 

(Boo and Oh 2017) 
 

The updated stiffness and force terms during the condensation procedure, and 
detailed derivations to construct the reduced linear static equation were described in 
reference, Boo and Oh 2017. The computational procedure of the automated static 
condensation method proposed is described in Fig. 8. 
 

The numerical results showed that the computational efficiency of the proposed 
method was much superior to that of the original static condensation method with the 
superelement technique. Details of the results are presented in the reference, Boo and 
Oh 2017. 
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Fig. 8 Computational procedure of the automated static condensation method (Boo and 
Oh 2017) 

 
 
5. CONCLUSIONS 
 

In this presentation, we reviewed the formulations of the accurate error estimator 
and the high-performance model reduction methods recently developed. Their 
performances were briefly presented through representative numerical examples. We 
believe that the present methods will be widely utilized to analyze the behavior of large 
and complicated FE models in various engineering practices including efficient crash 
simulation techniques, structural health monitoring and experimental dynamic analyses. 
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