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ABSTRACT 
 
     In this paper, finite element model updating (FEMU) based on multi-objective 
optimization with surrogate model is investigated. Conventionally, FEMU uses single-
objective optimization with finite element analysis (FEA). It needs computational burden 
considerably because of a lot of FEA. This issue can be addressed by replacing FEA 
with surrogate model. In the case of single-objective optimization, weighting factors in 
the cost function should be assigned properly. However, the optimal weighting factor 
are not known in advance. The previous studies have used the trial-and-error strategy 
or user’s preference for this purpose. In this study, FEMU with multi-objective 
optimization, which can construct the Pareto optimal front through a single run without 
assigning the weighting factors, and surrogate model are proposed. To verify the 
proposed FEMU, the field test is conducted in an in-service steel plate girder bridge 
and the results of the proposed method are compared with those of the single-objective 
optimization. The comparison shows that the multi-objective optimization is superior to 
the single-objective optimization in calculation time as well as the relative errors 
between updated model and measurement. 
 
1. INTRODUCTION 

 
Finite element model updating (FEMU) is a procedure to minimize the 

discrepancy between model predictions and measurements. From the method, it is 
possible to evaluate the overall performance of the structure. Conventionally, FEMU 
has used single-objective optimization with finite element analysis (FEA). In the case of 
single-objective optimization, residuals are formulated to objective function with 
weighting factors. When assigning weighting factors, the uncertainties from FE model 
and measurement should be considered. However, the most proper weighting factors 
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are not known in advance. Weighting factors are assigned based on user’s preference 
or trial-and-error strategy (Kim and Park 2004).  

To avoid the limitation of the residual minimization, multi-objective optimization 
has been employed recently. Here, the Pareto-optimal front (a.k.a. Non-dominated 
solutions) can be obtained and weighting factors do not have to be considered. Another 
limitation of conventional methods is that the computational burden occurs due to FEA. 
This computational issue can be addressed by surrogate model. Surrogate model uses 
a mathematical relationship between input and output of the target structure. By 
constructing the function of the input and output of the target structure, changes of 
variables in analysis model can be immediately known. It is important to select the 
proper basis function which can effectively express the input and output relation of the 
variables to compose of the surrogate model.  

In this study, multi-objective optimization is adopted to FEMU and compared with 
single-objective optimization. Also, surrogate model is used to enhance the efficiency of 
FEMU. 
 
2. Theoretical Background 
 
2.1 FEMU based on single-objective optimization and multi-objective optimization 
 
     Fig. 1 shows the comparison of single-objective function (SOF) and multi-
objective function (MOF) approaches. Depending on the weighting factors set by 
subjective consideration in SOF, optimal solution can be obtained. By cross-checking 
several candidates, it may require multiple analysis of optimization to validate the 
updated model. On the other hand, MOF approach searches all models that have been 
replaced alternately with a single run, and with the help of taking the decision making 
strategy for the selection of the most preferred FE model. 
 

 
Fig. 1 Comparison SOF and MOF (Jin et al 2014) 

 
2.2 Surrogate model 
 
     Kriging surrogate model is a prediction method which estimates the specific 
values by using the weighted linear combination with the known values. It is one of the 
surrogated models from Geostatistics. The variables required in the basis function are 
selected by the maximum value of the maximum likelihood function. The basis function 
can be expressed as 
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where subscript ‘p’ is dimensions of a sample, superscript ‘i’ and ‘j’ indicate ‘i’-th and ‘j’-
th samples, respectively. According to the variables involved in basis function, the 
accuracy and curvature of the Kriging model is determined. Correlation of the function 
value is defined by the distance of each samples. From this, the function of sample is 
expressed as the stochastic random variable which has a mean and variance value. 
Using the log maximum likelihood function and its mean and variance value, prediction 
value can be estimated. After defining the sample and covariance from the prediction 
point, the least square method is used to calculate the prediction value. In this study, 
the sequential sampling method is introduced to improve the accuracy of surrogate 
model. Fig. 1 shows the flow chart of construction procedure of the Kriging surrogate 
model. A more detail description can be found in Jin and Jung (2016). 
 

 
Fig. 1 Flowchart of the Kriging surrogate model with the sequential sampling strategy 

(Jin and Jung 2016) 
 
3. Experimental Validation 
 

In this chapter, the proposed method is verified using the field test data. The field 
test was conducted in a steel plate girder bridge. It is located in Chung-bu inland 
expressway, where many proposed and developed techniques are applied on and 
traffic does not allow to pass the road. The ambient vibration test was performed to 
obtain the natural frequencies and mode shapes of the target bridge. The target bridge 
is single span with 40.0 m long, 12.6 m wide and also skewed 2% as shown in Fig. 2. 

 

 
(a) A steel plate girder bridge         (b) an FE model 

Fig. 2 Target bridge 
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The dynamic responses were obtained by ambient vibration test. The measured 
data is used as calibration and validation value when FEMU was performed and after 
optimization. 15 accelerometers were used to obtain the dynamic responses and 
arranged as shown in Fig. 3. To obtain the data, the computer (NI PXI-1000B), 
multifunction DAQ (NI USB-6353), a sensor signal conditioner (PCB model 481a), and 
accelerometers (PBC 393B12) were used. The data was set to 100 Hz sampling 
frequency and investigated for about 120 minutes. Fig. 4 indicates the accelerometers 
data of 1st array (No.1 to No.5). From the obtained data, modal identifications, which 
are stochastic subspace identification (SSI), were used to figure out the modal 
properties. 

 

 
Fig. 3 Sensor deployment 

 
     The initial FE model was modelled by ANSYS APDL as shown in Fig. 2. The 
initial FE model is composed of 131,909 elements with shell and beam element. Table 
1 indicates the differences between the initial FE model and measurement. 

 
Table 1 Comparison of the natural frequencies 

Mode 
Experimental 
Result (Hz) 

Initial FE model 

Value (Hz) Error (%) 

1st bending (f1) 4.419 4.097 7.29 
1st torsion (f2) 4.787 4.404 8.00 

2nd bending (f3) 10.683 9.539 10.71 
2nd torsion (f4) 13.483 11.284 16.31 

  
     FEMU is conducted in two cases; (1) single-objective optimization, and (2) multi-
objective optimization. In the case of single-objective optimization, weighting factors 
have 46 cases of the range from 0.05 to 0.9 depending on the cost function. 
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where ‘i’ indicates ‘i’-th natural frequencies, 𝜔𝑖 indicates weighting factor of ‘i’-th. 𝑓𝑖
𝑒𝑥𝑝

 

and 𝑓𝑖
𝐹𝐸𝑀 indicate ‘i’-th experiment and FE model natural frequencies, respectively. 

Table 2 shows the updating parameters and their upper and lower bounds. 
In the case of multi-objective optimization, FEMU was performed under the same 

conditions as single-objective optimization as depicted in Table 3. As seen from the 
table, FEMU with single-objective optimization needs 46 runs to obtain the results; on 
the other hand, FEMU with multi-objective optimization needs only a single run to 
obtain the updating results. Fig. 6 shows the 3 target outputs (i.e., f1, f3 and f4) and 
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one for validation purpose (i.e., f2). In the figure, the square symbol represents the 
mean value and two diamonds are maximum and minimum values. Also, the red dotted 
line indicates the measurement data. As shown in the second plot of Fig. 4(a), 
distribution of f2 (i.e., 1st torsion) is biased compared with the measurement data in the 
case of single-objective optimization. However, in the case of multi-objective 
optimization (see Fig. 4(b)), the updating results are well distributed covering the 
measurement data. 
 

Table 2 Updating parameters and their upper and lower bounds 
Updating parameters Upper bound Lower bound 

Girder 1.5 0.7 
Slab 1.5 0.7 

Cross girder 1.5 0.7 
Normal stiffness 2.5 0.1 
Sticking stiffness 2.5 0.1 

 
Table. 3 Details of updating 

Approach Population size Generation No. of run No. of iteration 

Single-objective 500 200 46 229,950 
Multi-objective 500 200 1 100,000 

 

    

(a) SOF result 

    



(b) MOF result 

Fig. 4 Updating results 
4. Conclusion 
 
     This paper investigates FEMU consisting of multi-objective optimization and 
surrogate model. To validate the effectiveness of the proposed method, the ambient 
vibration test of a steel plate girder bridge was conducted and its modal properties were 
used in the FEMU procedure. According to the updating results, the proposed 
approach can reduce the computational burden compared to the single-objective 
optimization. Moreover, the proposed method can obtain relatively non-biased or well-
distributed updating results. 
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