
























0 10 20 30 40 50 60

0

20

40

60

80

100

120


y

A
sy 

= 200 mm
2

f
sy
 = 500 MPa

f
su

 / f
sy
=1.03

L
x
 / L

y
  = 1.0


su

 = 1.5%

 

 

S
la

b 
lo

ad
, 

P
 (

kN
)

Mid-panel deflection(mm)


u

0 10 20 30 40 50 60

0

20

40

60

80

100

120


su

 = 2.5%

 

S
la

b 
lo

ad
, 

P
 (

kN
)

Mid-panel deflection(mm)


y


u

 
 su = 1.5%  su = 2.5% 

0 10 20 30 40 50 60

0

20

40

60

80

100

120

A
sy 

= 200 mm
2

f
sy
 = 500 MPa

f
su

 / f
sy
=1.03

L
x
 / L

y
 = 1.0


su

 = 5.0%

 
 

S
la

b 
lo

ad
, 

P
 (

kN
)

Mid-panel deflection(mm)


y1


u

0 10 20 30 40 50 60

0

20

40

60

80

100

120


su

 = 8.0%

 

S
la

b 
lo

ad
, 

P
 (

kN
)

Mid-panel deflection(mm)


y


u

 
 su = 5.0%  su = 8.0% 

 

Fig. 8: Load deflection curves and ductility factor for edge-supported slab with 
Asx = Asy = 200 mm2, Lx / Ly =1.0, fsu/fsy=1.03 and fsy = 500 MPa. 

 

 

Fig. 9 shows the ductility ratio W1/W0 versus the uniform elongation, su for the 
data in Tables 4 and 5. The figure shows that edge-supported slabs are more ductile 
than corner-supported slabs. It shows also that the slope of the best-fit lines for the 
edge-supported slabs is higher than the slope of the lines of the corner-supported slabs. 
This means that the change in the uniform elongation affects the ductility of slabs with 
high redundancy more than the less redundant slabs. The figure shows also that as the 
slab aspect ratio Lx/Ly increases (i.e. redundancy decreases), the slab ductility 
decreases significantly. Furthermore, it can be seen that the slab ductility increases as 
the stress ratio increases. This can be seen for both edge-supported and corner-
supported slabs. 
 



 

Fig. 9: Ductility ratio (W1/W0) versus uniform elongation. 
 
 
5. SUMMARY AND CONCLUSIONS 
 

The main conclusions drawn are as follows:  
1. The two-way corner supported slabs reinforced with low ductility (Class L) 

welded wire fabric fail in a brittle mode by fracture of the tensile reinforcement 
and, generally, not by crushing of the compressive concrete. 

2. The uniform elongation of the reinforcement (su) has a significant effect on the 
ductility of two-way reinforced concrete slabs. However, the effect of the 
reinforcement ductility is much more prominent in the slabs with high 
redundancy than those with less redundancy.  

3. Corner-supported slabs behave in a similar manner to one-way slabs, regardless 
of the slab aspect ratio Lx/Ly. 

4. The change in slab aspect ratio Lx/Ly affects the ductility of edge-supported slabs 
much more than the corner-supported slabs. 

5. The ductility of the two-way slabs is increased as the stress ratio is increased. 
6. The load deflection curves for the corner-supported square and rectangular two-

way slabs were unsatisfactorily brittle when su < 3.0% and < 4.0%, respectively. 
These slabs had little ability to undergo significant plastic deformation at or close 
to the peak load. In all cases, fracture of the steel occurred at deformations not 
much larger than the deformation at peak load. 
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7. The square panels of the corner-supported and edge-supported two-way slabs 
have higher ductility factors than the rectangular panels. 

8. A change in the steel uniform elongation su has a higher impact on the ductility 
factor than a change in fsu/fsy. 

9. Edge-supported slabs have reasonable ductile behaviour even at low values of 

su. This is due to the high redundancy and load transfer by mechanisms other 
than bending. 
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