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ABSTRACT 
 

     In hydrogen-precharging method, hydrogen will outgas from the specimen during 
the test, and thereby, the content and effect of hydrogen decreases with time. This 
decrease in hydrogen content may be permissible for a short-term test such as a 
tensile test and a low-cycle fatigue test at high-frequency, while it is a fatal problem for 
a long-term test such as a high-cycle fatigue test at low frequency. To solve this 
problem, in the previous study, we have developed a novel fatigue testing method, in 
which a four-point bending fatigue test was performed with circulation of a hydrogen-
charging solution in a pipe specimen over an entire period of the test. 

In this study, the four-point bending fatigue tests were carried out for a carbon 
steel (JIS-S35C) (i) using a pipe specimen with continuous hydrogen-charging and (ii) 
using a hydrogen-precharged specimen. After crack initiation, the fatigue crack growth 
tests were conducted under a constant stress intensity factor range of 15 MPa･m1/2 by 
properly decreasing the stress amplitude. The time variations of total hydrogen content 
were measured both for a continuous hydrogen-charged specimen and for a hydrogen-
precharged specimen. By highlighting the difference of charging method, the 
relationship between the crack growth rate and the hydrogen content was quantitatively 
discussed. 
 
1. INTRODUCTION 
 
     Recently, the hydrogen energy attracts a great attention as a clean energy. The 
practical use of hydrogen equipment and infrastructure such as hydrogen fuel cell 
vehicle and hydrogen station are being proceeded. However, there are some problems 
to be solved for the realization of hydrogen society. 
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It is well known that hydrogen penetrates into a metallic material and deteriorates its 
strength properties. This phenomenon is called Hydrogen Embrittlement (HE). To 
ensure the long-term safety of hydrogen equipment, HE in fatigue needs to be correctly 
understood. Some components used in hydrogen equipment are subjected to a cyclic 
load of extremely low frequency, thus the fatigue property at low frequency in the 
presence of hydrogen is especially a very important issue. However, it is difficult to 
tackle this issue by the conventional evaluation method of HE, because the 
conventional method, i.e. testing in air using a hydrogen-precharged specimen (so-
called hydrogen precharging method), has a fatal disadvantage, in which hydrogen 
outgassing from a specimen occurs during the test. In other words, in hydrogen 
precharging method, the hydrogen effect is evaluated under the temporal decrease in 
hydrogen content inside a specimen. In short-term testing such as tensile test and low-
cycle fatigue test, the effect of temporal decrease in hydrogen content can be regarded 
as negligible, and thus some researchers have investigated the hydrogen effect on the 
tensile properties (Matsuoka 2006, Matsunaga 2014) and low-cycle fatigue properties 
(Murakami 2010) using the hydrogen precharging method. However, the temporal 
decrease in hydrogen is unclear (probably considerable) in the case of long-term 
testing such as fatigue test at low frequency, and thereby, the hydrogen effect might not 
be evaluated properly. To solve this problem, in our previous study, we have developed 
a new easy yet effective testing method for investigating the HE in long-term fatigue 
(Yoshimoto 2017). The newly developed testing method is four-point bending fatigue 
test of a pipe specimen with internal circulation of hydrogen-charging solution. The 
fatigue crack growth test of common carbon steel using this method demonstrated that 
the crack growth was accelerated by the continuous circulation of hydrogen-charging 
solution (Yoshimoto 2017) and the acceleration became pronounced with decrease in 
test frequency (Yoshimoto 2017). In addition, a certain amount of hydrogen is 
contained in the specimen even after the 10-day-long fatigue test. Based on these 
results, hydrogen is expected to be supplied continuously to a specimen over an entire 
period of testing by continuous circulation of charging solution, but the change in 
hydrogen content over time has not been measured. In order to verify the effectiveness 
of the new method, it is necessary to clarify the time variation of hydrogen content both 
in hydrogen precharging method and in continuous hydrogen charging and their effect 
on the fatigue properties. 
In this study, the fatigue crack growth tests were carried out both for a pipe specimen 
with continuous hydrogen charging and for a hydrogen precharged pipe specimen. The 
relationship between time variation of hydrogen content and crack growth rate was 
investigated. 
 
2. EXPERIMENTAL METHOD 
 
     2.1 Material and Specimen 
     An annealed carbon steel (JIS-S35C) was used in this study. The Vickers 
hardness of this material is approximately 156. Figure 1 shows the microstructure, 
which is of ferrite-pearlite with an elongated texture in the rolling direction. Figure 2 
shows the shape and dimensions of pipe specimen. The specimen surface was 
polished with a #2000 emery paper and subsequently buff-polished using alumina 
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CHC specimen was almost constant, as shown Fig. 4. In this continuous hydrogen 
charging method, therefore, once the hydrogen content is saturated (i.e. the hydrogen 
inflow and outflow are balanced), it is possible to evaluate the hydrogen embrittlement 
under the constant condition even in long-term test. In this point, the continuous 
hydrogen charging method we developed has an advantage over the conventional 
hydrogen precharging method.  
The saturated hydrogen content of CHC specimen was lower than that of HPC 
specimen, as mentioned above. Nevertheless, the acceleration ratio is larger for CHC 
specimen than HPC specimen. Accordingly, it is considered that the degree of 
hydrogen effect of CHC specimen depends on the local hydrogen concentration rather 
than on the average hydrogen content, because the hydrogen distribution of CHC 
specimen is not uniform. Therefore, the effect of hydrogen distribution on the hydrogen 
embrittlement is another important issue for verification of the continuous hydrogen 
charging method, and this issue will be investigated in near future. 
 
4. CONCLUSIONS 
 
     The four-point bending fatigue tests were carried out at constant K of 15 MPa・
m1/2 for a carbon steel (JIS-S35C) (i) using a pipe specimen with continuous hydrogen-
charging and (ii) using a hydrogen-precharged specimen. The following results were 
obtained: 
(1) The hydrogen content of hydrogen-precharged (HPC) specimen decreased with 

time and it reached to almost same level as uncharged specimen about 500 h after 
hydrogen-charging. On the other hand, in continuous hydrogen-charging (CHC) 
specimen, the hydrogen content kept constant after the inflow and outflow of 
hydrogen were balanced. 

(2) The fatigue crack growth acceleration due to hydrogen correlates with hydrogen 
content. Thus, the acceleration ratio of HPC specimen decreased with decrease in 
hydrogen content, whereas that of CHC specimen kept constant over an entire 
period of testing. 

(3) From these experimental results, it can be concluded that the newly developed 
method of continuous hydrogen-charging is more effective to long-term fatigue test 
in the presence of hydrogen than conventional hydrogen-precharging method. 
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