




  

 
     2.1 Cable-stayed Bridge  
     The general layout of the bridge studied in this paper is shown in Fig. 1. Its 
system is a longitudinal-floating-type one. The concrete-box main girder is 300 m, 
which is 13.0 m in width and 4.0 m in height with single track for freight railway. The 
design vehicle speed is 80 km/h. Three-dimensional finite element model of the bridge 
is established in ANSYS, where the girders, towers and piers are modeled by Beam4, 
and cables are modeled by Link8.  

 
Fig. 1 General layout of the cable-stayed bridge studied in the paper (Unit: cm) 

(The relative longitudinal displacement between the left / right tower and the main 
girder is indicated by L_D and R_D respectively. And the longitudinal bending moment 
at the root of the left / right tower is indicated by L_M and R_M respectively) 

 
     2.2 Viscous damper  
     There are four longitudinal viscous dampers installed in the junction of the main 
girder and the pylons. The mechanism model of viscous damper can be illustrated by 
Eq. (1) and simulated through the Combin37 in ANSYS(Liu Huailin and Lan Haiyan 
2011).  

sgn ( )
n

vF C v v  (1) 

where, F is the damping force; Cv is the damping coefficient; v is the relative velocity; 
n is the velocity power function. 
 
     2.3 Braking forces of heavy haul trains  
     Heavy haul trains consist of locomotives and trailers connected by couplers and 
draft gears. It is difficult to build the refined model for that there are many geometric 
and contacting nonlinearities existing in heavy haul trains. The subject of the study is 
more concerned with the longitudinal responses of the bridge, instead of the vehicles 
themselves. Hence, they can be abstracted as a multi-mess spring-damping system. 
(Chou, Xia, and Kayser 2007) (Cole C 2006). For heavy haul trains, the force condition 
of a unit (locomotive or trailer) in longitudinal direction can be illustrated as shown in Fig. 
2. Balance equation of that is established as follows: 

1 ( )i i i i i iM x N N W B i = 1 m     (2) 
where iM , ix  , iB  and iW  are the mass, the acceleration, the braking force and the 
basic resistant force of the ith vehicle, 1iN  and iN  are coupler forces of the ith adjacent 
vehicles.  
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exit. So there are 56 braking typical cases in total. Since the braking process is 
dynamic and time-varying, the maximum responses are extracted for analysis. The 
effect of initial braking speed and position on bridge responses are given in Fig.4. 
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Fig. 4 The effect of initial braking speed and position on the relative longitudinal 

displacement between the towers and the main girder and the bending moment at the 
root of the towers 

     From (a) and (b) in Fig.4, the responses, the relative longitudinal displacements 
between the towers and the main girder, are similar at different speeds smaller than 
50km/h, when the trains starts braking in the bridge entrance. With the initial braking 
speed increasing, the responses become larger. However, it is not true that the higher 
speed the larger response is. When the initial braking speed is near 70km/h, there is a 
maximum for L_D and R_D respectively. As the train moves forward and brakes, the 
responses decrease gradually. The responses fall into the minimum when the initial 
braking position is near the exit, and the initial braking speed has little impact. 
     From (c) and (d) in Fig.4, when the trains starts braking in the bridge entrance, 
there is the maximum of the longitudinal bending moment at the root of towers. The 
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NSGA-II is utilized to do optimization process. After calculation, the Pareto optimal 
solutions to the parameters of the viscous dampers are shown in Fig. 8.  
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Fig. 8 Pareto optimal solutions to the parameters of the viscous dampers 

     To filer the Pareto optimal solutions and find the final optimum one, the relative 
reduction of each response, derived from the bridge with and without the optimized 
viscous dampers, is defined as Eq. (4), where the subscript 0 represents the response 
without viscous damper. 
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     Obviously, the relative reduction of each response should be set properly. On the 
one hand, there will be no suitable solutions if the relative reductions are too large. On 
the other hand, with small relative reductions, a valid selection could not be conducted. 
After many trails, all the relative reductions is defined as Eq. (5). Six selection results 
are shown in Tab. 2.  

_ _ 50% and  _ _ 50%

_ _ 10% and  _ _ 10%

R L D R R D

R L M R R M

 
 

 (5) 

Tab. 2 Relative reductions of the responses after selected 
Solution  I II III IV V VI 

Cv (kN/(m/s)) 10123 4517 4186 3967 3961 3932 
n 0.434 0.259 0.273 0.262 0.249 0.255 

R_L_M 25.63 12.52 15.51 14.75 13.16 13.91 
R_L_S 65.05 63.82 63.95 63.62 63.29 63.41 
R_R_M 14.59 10.91 12.68 12.30 11.45 11.82 
R_R_S 50.85 54.95 52.93 53.27 54.35 53.83 

     About solution I, all the relative reductions except R_R_S are smaller than those 
of other solutions. But the value of Cv is too large to be acceptable with too high cost. 



  

Since the larger the value of Cv, the more expensive the viscous dampers are. The 
relative reductions derived from solution II to solution VI are close to each other. 
Integrated with the purpose of the less-cost, the solution VI is chosen as the optimum 
choice, in which Cv =3932 kN/(m/s). n = 0.255. With the optimum viscous dampers, the 
longitudinal displacement of the bridge main girder significantly decreases. 
 
 
6. CONCLUSIONS 
     Based on the longitudinal dynamics vehicle model, the influence of initial braking 
speed and position on the key responses of a cable-stayed bridge are systematically 
investigated. To reduce the responses, parameter sensitivity of viscous dampers is 
performed. Optimization model is established and the proposed hybrid method BPNN-
NSGA-II is utilized to find the optimum parameters. The results show that: a. the effect 
of the initial braking speed and position on the key longitudinal responses of the bridge 
is great. The higher the speed, does not mean that the larger the structural response is. 
The initial braking position has a greater effect on the bridge response; b. the 
relationships between the parameters of viscous dampers and the key longitudinal 
responses of the bridge are high nonlinear , which are completely different from each 
other. Through proposed hybrid method BPNN-NSGA-II, the optimum parameters are 
found: Cv =3932 kN/(m/s). n = 0.255. The longitudinal displacement of the bridge main 
girder significantly decreases by the optimized viscous dampers. 
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