


1. Introduction 
 

Overloading has long been a main cause for bridge deteriorations and failures. As 
bridges are overloaded, excessive deformations in bridges can be expected. 
Consequently, information about bridge deformations over a period of time can provide 
indications of the extent of overloading and bridge deteriorations. As the bridge 
deformations are continuously collected and monitored, bridge owners will be able to 
make critical decisions on when to conduct repair or maintenance based on 
implications from the collected data, making the bridge management more efficient.  

Traditional techniques used for measuring bridge deformations include strain gauge, 
linear variable differential transformer (LVDT), global positioning system (GPS), and 
electro-optical instruments. While many techniques are available for monitoring 
structural deformations, this study focuses on utilizing machine vision for monitoring 
bridge deflections. Using machine vision for deflection monitoring offers the following 
benefits: (1) it provides a nondestructive measuring technique; (2) it provides a means 
to measure deflections at locations in which installations of instrument are challenging; 
and (3) it provides a simple, robust, and economical measuring system. 

Digital image processing techniques have been widely used in the past for 
measuring localized strains of various specimens (Savic and Hector Jr., 2009; Grytten 
et al., 2009; Jerabek et al., 2010). Recently, a new application of digital image 
processing techniques has been investigated, i.e. structural health monitoring. Kim and 
Kim (2011) presented a digital image processing method to monitor displacements of 
multiple points in a structure. Henke et al. (2015) developed a measuring system using 
digital image processing techniques for monitoring deformations of a roof structure in a 
building. For monitoring deformations of the roof structure, they installed light-emitting 
diodes (LEDs) at various locations of roof beams as measuring points. The results of 
their study were used to develop a continuous monitoring system and establish five 
operating stages for a gymnasium. Santini Bell et al. (2015) applied digital image 
correlation (DIC) to measure displacements in a girder bridge. The results of their study 
indicated that challenges existed in determining true deflections for small deflections 
with low resolution. It was suggested that more research should be conducted to 
investigate relationships between resolution and a minimum detectable deflection.  

This study is the first phase of a multi-phase research program. The objective of this 
study is to develop a reliable and affordable displacement measuring system using 
machine vision. This paper proposes a simple procedure to process digital images for 
displacement measurements. The following sections present the development of the 
proposed machine vision measuring method and an experimental study for method 
validation.    

 
 

2. Development of a displacement measurement system based on machine 
vision 
 
2.1 Imaging system calibration 

The goal of calibration was to detect the displacement of markers, calibrate the 
image pixel size and determine the precision of the imaging system. In the pilot study, a 



blue square target (76.2 mm × 76.2 mm) was first placed on a white board and then 
moved downward four times with an increment of 100 mm each time. During the study, 
the camera remained stationary as the target moved verically at a distance of 1m from 
the marker. A schematic of the pilot study is presented in Fig. 1. Given the actual 
displacement data, the photo pixel size in millimiter were calculated. The precision and 
the largest possible displacement of markers were estimated. 

      

 
Fig. 1 Schematic of the pilot study 

 
 
The following procedure were to estimate the pixel size associated with the 

aforementioned designated displacements of the target.   
 
Step 1 -- Exact the blue channel and convert it to a binary image using Otsu’s 

method. 
Step 2 – Segment the marker and calculate the centroid. 
Step 3 – Compute the pixel size in millimeter and estimate the precision of the 

calibration. 
 
Fig. 2 shows a schematic of the digital image processing procesure for one target 

position. The same procedure was applied to locate the centroid of the target for each 
position shown in Fig. 1 – Position 0 to Position 4. After the centroids of the target were 
determined, the numbers of pixels between Position 0 and other positions (Position 1 to 
Position 4) were calculated by subtracting the row coordinate for Position (i) from the 
row coordinate for Position (i+1). Since the distance between each target position was 
carefully controlled and fixed at 100 mm, an estimate of the pixel size was feasible 
through dividing the traveled distance by the number of pixels in it. Table 1 lists 
counted numbers of pixels between various target positions and the estimated pixel 
size.   
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scale steel bridge model with a span of 20 feet was designed and built in an indoor 
facility. A schematic of the designed 1:10 scale steel bridge is shown in Fig. 3. The 
superstructure of the bridge comprised top chord members, bottom chord members, 
square tubes bracing top chord members, truss beams bracing bottom chord members, 
and hangers connecting top and bottom chords. Also part of the bottom chords, 
diagonal tubular members were added to form secondary trusses. The secondary 
trusses were designed to support gravity loads. Then the loads were transferred to the 
top chords through hangers.  

 

Fig. 3 Schematic of the built 1:10 scale steel bridge 
 

 
3.2 Test instrumentation and test results 

An experimental study was carried out to determine the accuracy of the proposed 
displacement measurement system in monitoring deflections of a loaded structure. The 
main goal of the experimental study was to apply the developed displacement 
measurement system to monitor the mid-span deflection of the built bridge model. A 
76.2 mm × 76.2 mm square yellow target was placed in the middle of the lower truss 
member for monitoring the mid-span deflections of the bridge model. Two freestanding 
76.2 mm × 76.2 mm square blue targets, remaining stationary throughout the testing, 
were put besides the monitored target as the reference points. To identify the accuracy 
of the mid-span deflections measured by the machine vision, a dial gauge was installed 
at the truss member underneath the target to measure vertical deflections of the target. 



A schematic of the test instrumentation is shown in Fig. 4.  
  In order to create various deformation in the bridge, the testing consisted of four 

loading steps with incremental loads. During the testing, bags of portland cement were 
placed approximately in the middle of the lower truss members of the bridge. The 
weight of each portland cement bag was carefully measured before placed on the 
bridge. Multiple pictures were taken by a digital single-lens reflect camera (Cannon 
Rebel T2i) at a distance of 1 m directly in front of the target before and after each 
loading step. The distance between the camera and target was controlled to be 
identical to the distance used in the pilot study. Therefore, the pre-determined pixel size 
could be utilized to estimate bridge deflections monitored by machine vision. Results of 
load vs. dial gage measured displacement are shown in Fig. 5. 

 

Fig. 4 Schematic of the test instrumentation 
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Fig. 5 Load vs. vertical displacement measured by the dial gauge 
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Table 2 Estimated pixel size from the pilot study 

Load (N) 
Vertical displacement 
measured by the dial 

gauge (mm) 

Vertical displacement 
calculated by the proposed 

technique (mm) 

Difference 
(mm) 

Error 
(%) 

403 1.66 1.30 0.36 21.7 
824 3.15 3.04 0.11 3.5 

1,234 4.68 4.56 0.12 2.6 
1,639 6.17 6.08 0.09 1.5 

 
 
4. Conclusions 
 

Based on the results of the current study, the following conclusions can be drawn: 
1. The accuracy of the proposed machine vision deflection measurement system is 

sensitive to the size of pixels in pictures. It is suggested by the test data 
presented herein that the proposed method is adequate for measuring 
deflections that are insensitive to the pixel size with a good accuracy (less than 5% 
error).    

2. As the locations of the centroids of the target and references are represented by 
pixels, the accuracy of the centroid determinations are sensitive to the size of 
pixels.  

3. Given that the anticipated bridge deflections are insensitive to the pixel size, the 
proposed machine vision measurement system provides an inexpensive, 
accurate, and reliable alternative to traditional deformation measurement 
systems, such as LVDT or strain gauges. 

Future studies are recommended to measure bridge deformation with pattern 
recognition on high visible and infrared reflective paintings. The bridge deformation can 
be monitored continuously with high spatial resolution along the bridge.  
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