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Fig.17 Components of mean and fluctuating lift forces 

 
In addition, we also analyze the components of mean and fluctuating lift forces in 

order to enhance the understanding of suppress of central grids and the characteristics 
of aerodynamic forces as shown in Fig. 17. Whether it is the original deck or 
optimization deck, the contribution of the mean lift on the downstream in total lift is 
greater than 62%. This is because that the first vortex exists behind the trailing oblique 
webs of upstream girder. As for the fluctuating lift, the total fluctuating lift is mainly 
provided by the downstream girder, which is accounting for nearly 80%. This means 
that the mean total lift is mainly contributed by the upstream girder, while the fluctuating 
lift is mainly contributed by the downstream girder. This phenomenon is similar as that 
of staggered cylinders (Sumner 2010; Zhou and Alam 2016). In addition, it should 
mention that both the mean and fluctuating lifts on central grids are less than 10% as in 
the total mean and fluctuating lifts, respectively. 

 
 

5. Conclusions 
 

Delayed Detached Eddy Simulation (DDES) is performed to investigate the flow 
over two twin box girders at Reynolds number Re=2.5×104. The Strouhal number, drag, 
lift and pitch moment coefficients, as well as the unsteady wake structures are studied 
in order to enhance understanding of VIV performance and the suppression of central 
grids. Some conclusions are summarized as follows:   

 The severe vertical vortex-induced vibration phenomenon are found as for the 
original two box girder as a result of large scale vortices in the central vent, 
which induce obvious lift fluctuation on the downstream girder. 

 The VIV are obviously suppressed by the central grids in the gap due that the 
vortices in central vent becomes weaker, which cause a smaller fluctuating lift 
forces on the deck. 

 The mean total lift is mainly contributed by the upstream girder, while the 
fluctuating lift is mainly contributing by the downstream girder. 
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