2.2 Construction stage

It relates to transport the produced steel bars and fresh concrete to the construction site and cast concrete using pump and vibrator, in which the evaluation of CO_2 emission during transportation process adopts the same method as above. The method of calculating CO_2 emitted by casting concrete is similar to the production of fresh concrete. Utilizing the energy consumption of the pump and vibrator during casting fresh concrete computes the CO_2 emission. During construction stage, the CO_2 emitted by using pump and vibrator to cast concrete can be referenced as the following Table4.

Table 4. The basic unit of CO_2 emission during construction stage							
Item	Unit	CO ₂ -kg/m ³	Reference				
Pump	m³	0.074	Institute for Diversification and Energy Soving				
Vibrator	m³*	0.04	institute for Diversification and Energy Saving				

Table 4. The basic unit of CO₂ emission during construction stage

2.3 Use stage

In the use stage, due to CO_2 or other aggressive substances penetrate into concrete and react with $Ca(OH)_2$, which is the main hydration production of cement, cause the steel embedded corrosion and concrete structure destroy. Therefore, CO_2 will be emitted during replace some damaged concrete elements. In this study, comparing the CO_2 capture, the problem of concrete elements destroys can be ignored. Thus, in the life cycle of concrete elements, the CO_2 absorption will be considered during the use stage, not the CO_2 emission.

2.4 Demolition stage

When concrete structure gets to the using life, concrete structure and elements need to be demolished. The prophase of demolition stage, CO_2 emission stems from using the dissolution equipment; the late demolition stage, CO_2 emission involves the waste transportation, recycled using as an aggregate in the production new concrete and so on. The CO_2 emitted by waste transportation can adopt the same method as the raw materials transportation stage, the calculation during demolition and crushing process can be referenced as the following Table5.

Table 5. The basic unit of CO ₂ emission during demonition stage								
ltem	Unit	CO ₂ -kg/m ³	Reference					
Demolition	m ³	3.81	Institute for Diversification and Energy Soving					
Crushing	m ³ *	0.59	Institute for Diversification and Energy Saving					

Table 5. The basic unit of CO₂ emission during demolition stage

3 Development of concrete structure life-cycle CO₂ absorption evaluation method

Because CO_2 , due to react with $Ca(OH)_2$ existing in cement hydration productions, can be captured during the use stage and demolition stage, CO_2 absorption should be considered as evaluate the CO_2 emission. About the evaluation method of CO_2 absorption, many scholars present some different methods, in which the common using method is utilize the carbonation depth multiply the exposed surface areas of concrete. Pade and Guimaraes (2007) and Dodoo et al. (2009) used the following equation to calculate CO_2 absorption based on the predictive models of Fick's first law of diffusion and the life of concrete structure.

$$C_{A} = x \times M_{c} \times f_{CaO} \times r_{CaO} \times A \times m$$

$$x = k\sqrt{t}$$
(5)

Where C_A indicates the total CO_2 absorption of concrete, x expresses the carbonation depth, M_c is the quantity of OPC per cubic meter of concrete, f_{CaO} is the amount of CaO content in Portland cement CaO (assumed to be 0.65), r_{CaO} is the proportion of CaO can be carbonated (assumed to be 0.75, Lagerblad 2005), A is the exposed surface area of concrete, m is the chemical molar fraction (CO_2/CaO equate to 0.79), k is the carbonation rate coefficient and t indicates the years of service life. According to the EHE code (Fomento 2008), the service life can be calculated by classifying two sections as following equation (6).

$$t = \left(\frac{c_d}{k}\right)^2 + \frac{80 \times c_d}{d_s \times v_c} \tag{6}$$

Where c_d is the protective layer thickness of concrete (mm), d_s is the diameter of steel bar (mm), v_c is the corrosion speed (um/year).

4. Study on the case of CO₂ emission–absorption of concrete structure

4.1 Overview

In this study, one RC plate, beam, column and shear-wall were taken to research during the lifetime of concrete structure, respectively. The compressive strength value is same (25MPa) for the four elements, as well as the concrete mix, dimension and steel reinforcement of three kinds of elements were provided in Table6 and Table7. To obtain the CO₂ emission during life-cycle of three elements, assuming the distance and type of freight vehicle indicates in Table8, in which Fresh Concrete denotes the distance from the ready-mixed concrete plant to the construction site, Demolition Concrete denotes the distance from the distance from the construction site to Waste disposal Center and others indicate from its material producer to the ready-mixed concrete plant.

0.25

0.4

1

Beam

Column

shear-wall

Table 6 Concrete mix (C25)									
	Cement	Water	Sand	Coarse	GGBFS	Plasticizer			
Kg/m ³	220	170	850	1050	110	2.5			

Kg/m	220	170	850	1050	110	2.5
		Table 7 Di	mension and re	einforcement		
Item	a(m)	b(m)	h(m) C _d	(m) S	SR*
Plate	2	1	0.1	0.	02 1	Ι0Φ12

1

0.16

0.03

0.03

0.02

4Φ16

4Φ20

16Φ12

1 *In this study, CO₂ emission of the steel reinforcement did not be considered.

0.45

0.4

Transportation							
Distance(km)	Type of freight vehicle						
200	23-ton capacity bulk trailer						
200							
200							
150	15 ton conceits discel truck						
150							
50	6m ³ capacity in-transit mixing truck						
100	23-ton capacity bulk trailer						
	Distance(km) 200 200 200 150 150 50 100						

Table 8 Dimension and reinforcement

4.2 Evaluation CO₂ emission of concrete structure

Using the method in section2 introduction, CO2 emission of concrete structure can be evaluated. The detailed calculation process indicates Table9, and the final result was given in the Table10.

		Material Production Stage							Transportation Stage			
Item(unit:		А		В	A.B			D	E	A.D.E	A.D.E	A.D.E
Element)		kg/unit		00 100		CO2-kg/unit		km		CO ₂ -kg/unit		
	Р	В	C/S	CO ₂ -kg/kg	Ρ	В	C/S	Distance	CO ₂ -kg/(kg km)	Р	В	C/S
OPC	44	24.75	35.2	0.944	41.536	23.364	33.229	200	5.18×10 ⁻⁵	0.456	0.256	0.365
Sand	170	95.625	136	0.0026	0.442	0.442	0.354	150	6.3×10 ⁻⁵	1.607	0.904	1.285
Coarse	210	118.125	168	0.0075	1.575	1.575	1.26	150	6.3×10 ⁻⁵	1.984	1.116	1.588
Water	34	19.125	27.2	1.96×10 ⁻⁴	6.664×10 ⁻³	3.749×10 ⁻³	5.331×10 ⁻³	-	-	-	-	-
GGBFS	22	12.375	17.60	0.0208	0.458	0.257	0.366	200	5.18×10 ⁻⁵	0.228	0.128	0.182
Admixture	0.5	0.281	0.4	0.25	0.125	0.07	0.1	200	2.21×10 ⁻⁴	0.022	0.012	0.018

Table 9 Examples for evaluation CO₂ emission of deferent stages (kg/element)

	Sum		44.142	24.830	35.304		Sum	4.298	2.416	3.438		
Production	490.5	270 291	294.4	0.00769	3 60	2.076	2 /29	50	$0.671 \ kg/(m^3 \ km)$	6 74	2 70	5 202
Concrete	400.5	210.201	304.4	0.00766	3.69	2.070	3.430	50	0.074 -kg/(III KIII)	0.74	3.79	0.392

Table 10 Examples for evaluation CO₂ emission of deferent concrete elements (kg/element)

Item	Plate	Beam	Column	Shear-wall	
	Material	44.142	24.830	35.304	35.304
Production stage	Transportation	4.298	2.416	3.438	3.438
	Production	3.69	2.076	2.91	2.91
Construction store	Transportation	6.74	3.79	5.392	5.392
Construction stage	Construction	0.023	0.013	0.018	0.018
	Demolition	0.762	0.429	0.608	0.608
Demolition stage	Transportation	2.58	1.457	2.130	2.130
	Recycling	0.118	0.066	0.092	0.092
Sum	62.353	35.077	49.892	49.892	

4.3 Evaluation CO₂ absorption of concrete structure

During the process of calculation CO_2 absorption of life-cycle concrete, combined with the actual situation, two surface area of plate, three surface area of beam and four surface area of column are considered to uptake CO_2 existing in ambient air. According to the EHE code, assuming the carbonation rate coefficient k equal to 4.72mm/year^{0.5}, and the corrosion speed rate equal to 2um/year. The years of service life, using the equation (6), for plate, beam, column and shear-wall is 84.62 year, 115.40year, 100.40year and 84.62 year, respectively. Obviously, because the protective layer thickness of plate is thinner than beam and column, the service life for plate is shorter than that beam and column. CO_2 capture depends on the service life and exposed surface area, according to the above introduction and just computed service life, the CO_2 absorption can be calculated by using equation (5), and the results present in the Table11.

Item	Plate	Beam	Column	Shear-wall					
use stage	14.72	4.94	6.41	7.36					
Demolition stage	16.42	5.51	7.15	8.21					
Sum	31.14	10.45	13.56	15.57					

Table11 Examples for evaluation CO₂ absorption of deferent concrete elements (kg)

4.4 Assessment results and analysis

Drawing the CO₂ emissions during every stage of concrete life in a picture, as

shown in Fgure2, we will find the max emission appears in the production stage, especially in the material production stage, above 70% emission happens in this stage. Additional, because the dimension of four concrete elements is different, in order to make the results comparable, changing the CO_2 absorption and emission of these four elements into the same volume, as illustrated in Table12. Simultaneously considering CO_2 emission and absorption, the result of four concrete elements was drawn in a same picture as the Figure3 shown. Observing the results, we can get the total emission of CO_2 per unit volume is same for different concrete elements; however, the total absorption of CO_2 per unit volume is totally different. The reason for this result is that the exposed surface area of concrete plate is the larger, and the capture of CO_2 is the most in the three elements. Therefore, when we assess the emission CO_2 of life-cycle concrete, concrete structures with different structural types, such as frame structures and shear-wall structures, we can deduce that one frame structure, in the case of the same building area, will emit more CO_2 than that of one shear-wall structure.

Fig. 2 CO₂ emissions during every stage of concrete life

			2
T		i . 1 f 1	
I ania 17 (1), amission and	aneorntion har lini	t volume of each	concrate element (kd/m ²)

Item	Plate	Beam	Column	Shear-wall
Emission	311.78	311.80	311.83	311.83
Absorption	155.7	92.89	84.75	97.31
Total	156.08	218.91	227.08	214.52

Fig. 3 CO₂ emission- absorption of four concrete elements

5. Conclusions

In this study, the CO_2 emission and uptake in production stage, construction stage, use stage, and demolition stage are calculated; meanwhile, the influences of structural element types, shapes, and sizes on CO_2 uptake performance are clarified. Under the specific cases adopted in this study, the following conclusions can be drawn:

• In the life-cycle of concrete structure, the CO₂ emission and absorption will happen, regardless the production stage, construction stage, use stage, and demolition stage. Generally, the emission main happen in the production stage, construction stage and demolition stage, especially the production stage, and the absorption main happen in the use stage and demolition stage.

• When the reinforced steel bars did not be considered, the total emission of CO₂ per unit volume is same for different concrete elements; however, if concrete carbonation was considered, the result is totally different. The larger exposed surface area of concrete, the more CO₂ emission of concrete.

• For concrete structures with different structural types, because the relative ratios for different structural element are different, the CO₂ uptake ability is also different. The more areas of plate or shear wall, the less CO₂ emission of concrete structure.

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(No. 2015R1A5A1037548)

REFERENCES

- Streimikiene, D., Girdzijauskas, S. (2009), "Assessment of post-Kyoto climate change mitigation regimes impact on sustainable development", *Renew. Sust. Energ. Rev.*, 13, 129–41.
- Benhelal, E., Zahedi, G., Shamsaei, E., Bahadori, A. (2013), "Global strategies and potentials to curb CO₂ emissions in cement industry", *J. Clean. Prod.*, **51**, 142–161.
- Frank C. (2010), "Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint", *Int. J. Life Cycle Assess*, **15**, 549-556.
- (2016) Korea LCI Database Information Network, http://www.edp.or.kr/.

(2016*) Japan Society of Civil Engineers, http://www.jsc

- Tatiana, G. S., Víctor, Y., Julián, A. (2014), "Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability", *Int. J. Life Cycle* Assess, **19**, 3-12.
- Tae, s. h., Baek, C. H., Shin, S. W. (2011), "Life cycle CO₂ evaluation on reinforced concrete structures with high-strength concrete", *Environ. Impact Assess Rev.*, **31**, 253-260.
- Yang, K. H., Jung, Y. B., Cho, M. S., Tae, S. H. (2015) "Effect of supplementary cementitious materials on reduction of CO₂ emissions from concrete", *Journal of Cleaner Production*, **103**, 774-783.
- Park, J. H., Tae, s. h., Kim, T. Y.(2012), "Life cycle CO₂ assessment of concrete by compressive strength on construction site in Korea", *Renew. Sust. Energ. Rev.*, **16**, 2940-2946.
- Pade, C., Guimaraes, M. (2007), "The CO₂ uptake of concrete in a 100-year perspective", *Cem. Concr. Res.* **37**(9):1384–1356.
- Dodoo, A., Gustavsson, L., Sathre, R. (2009), "Carbon implications of end-of-life management of building materials", *Resour. Conserv. Recy.*, **53**(5):276–286.
- Lagerblad, B. (2005), "Carbon dioxide uptake during concrete life-cycle: State of the art", Swedish Cement and Concrete Research Institute, Stockholm.

Fomento, M. (2008), EHE-08; Code of Structural Concrete. M. Fomento, Madrid, Spain.