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ABSTRACT

Different kind of methodologies have been presented in the last decades and
achieved broad applications in structural damage detection (SDD). Particle swarm
optimization (PSO) based algorithms have been confirmed to be effective for SDD. The
method avoids inversion computation which is prone to be ill-posed or ill-conditioning.
However, the accuracy of optimization algorithm is affected by its randomness although
it is the theoretical basis of algorithm. Repeated calculations are often performed to
gain an average value of SDD results, but the computing cost increases simultaneously.
In this study, a novel two-step SDD method is proposed via a combination of PSO and
Bayesian reliability analysis. It consists of two major steps, i.e., SDD and Bayesian
reliability analysis. Firstly, SDD on structures is achieved by the PSO – improved
Nelder-Mead method (PSO-INM). a new objective function, so-called multi-sample
objective function, is proposed based on Bayesian theory. The Bayesian reliability
analysis is then performed for a further analysis, the most likely damaged elements are
distinguished from the spurious ones. Finally, some numerical simulations on SDD of a
2-storey rigid frame are used to assess the effectiveness of the proposed method,
some related issues are discussed as well.

1. INTRODUCTION

Structural damage detection (SDD) techniques are methodologies that use structural
static or dynamic responses to assess the structural operating condition. The stiffness
of structures is one of the most common used index to diagnose the extent of damages.
In the last two decades, SDD have been popularly investigated and achieved greatly
successes in the field of structural health monitoring (SHM). The basic idea of SDD is
to find the changed structural properties from measured responses before and after
severe events such as hurricane, earthquake, deterioration due to aging and so on
(Farrar and Worden 2007; Li and Chen 2013). For a better description of structural
damage, a class of models are generally defined based on an assumed relationship
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between input and output variables of the structural system (Teughels and De Roeck
2005). Such model-based techniques transfer the SDD process into minimizing the
difference between the measured and theoretical output data of the structures, which
named model updating. The output data for model updating is divided into two major
parts, time domain data and frequency domain data (Yu and Lin 2015). Time domain
data such as accelerations are rarely used directly for modal updating as it requires
precise knowledge of the input excitation (Simoen et al. 2015). On the contrary,
frequency domain data, which are extracted from the measured responses, are
independent of the input excitation. The advantages make frequency domain data more
popular in model updating. Frequency domain data such as frequency, mode shape,
modal flexibility (Pandey and Biswas 1994), modal curvature (Pandey et al. 1991), and
modal strain energy (Shi et al. 2000) have been wildly used and employed for
structural model updating.

Generally, an objective function (or cost function, fitness function) is needed to be
pre-established for model updating based on the measured and theoretical output data,
and SDD is achieved by minimizing the objective function. In other words, model
updating problem is equivalent to a constrained optimization problem. SDD is a typical
inverse problem (Friswell 2008) and traditional methodologies using decomposition
methods, such as singular value decomposition (SVD), QR factorization or Cholesky
factorization, and regularization techniques to solve the problem involved ill-posedness
inevitably (Simoen et al. 2015). The ill-posedness result in a very unstable solution with
respect to small changes in the measured data.

To overcome this difficulty, some computational techniques, such as genetic
algorithm (GA) (Yan et al. 2007), ant colony optimization (ACO) (Yu and Xu 2011),
artificial fish swarm algorithm (AFSA) (Pandey and Biswas 1994), firefly algorithm (FA)
(Pan et al. 2016) and PSO (Baghmisheh et al. 2012; Seyedpoor 2012) have been
proposed for solving SDD problems. Among these techniques, the PSO based
algorithm has been confirmed effective due to its good performance in global searching.
PSO is simple in concept and didn’t involve inverse analysis. However, the accuracy of
the optimization algorithm is affected by its randomness which is the theoretical basis of
the algorithm. The randomness of PSO, such as particle initial distribution and random
numbers containing in the manipulating equation, ensures the algorithm to search the
whole feasible space but sometimes makes it fall into the wrong solution, which are
generally called local optimum. However, the PSO algorithm has been improved to deal
with such weakness. Baghmisheh et al. (2012) adopted a hybrid PSO-NM algorithm for
damage assessment based on PSO and Nelder–Mead simplex algorithm (NM).
Seyedpoor et al. (2012) proposed a two-step algorithm which reduce the dimension of
optimal parameters leading a more accurate results.

Another factor affects the accuracy of PSO is the uncertainty of model and response
data. Due to the complex and indeterminate environment around the structure, the
output data tends to show significant variation from one test to the next. The
disturbance of environments are described as noise. Therefore, idealized numerical
prediction models are unable to perfectly represent behaviors of the structure.
Probabilistic analysis is a common used method for uncertainty quantification (Simoen
et al. 2015). Probability density functions (PDFs) are always pointed to the uncertain
variables and hypothesis test is applied to assess the reliability of structural damages



identified by PSO-INM. Bayesian method is a well-known theorem among probabilistic
analysis methods. Beck (Beck et al. 1999; Cheung and Beck 2009; Ching and Beck
2004) and Yuen (Yuen et al. 2004; Yuen and Kuok 2011) have made great efforts to
establish the Bayesian statistical framework for SHM. Beck firstly presented a Bayesian
statistical framework for system identification and applied the theory to continual on-line
SHM using vibration data from structures.

Actually, the random searching ability of the PSO and the noise contaminated in the
output data both lead to an unstable solution. To address the deficiency, the
probabilistic analysis would be a good way to assess the solution and improve its
accuracy. In this paper, a novel two-step SDD method is proposed. In the first step, an
objective function based on Bayesian theory, named multi-sample objective function, is
proposed to reduce the influence of noises and the objective function is optimized by
the PSO-INM algorithm. In the second step, a post posterior probability analysis is
presented based on Bayesian methodology to distinguish real damage elements from
possible ones. Numerical simulations on a 2-storey rigid frame using frequencies and
mode shapes information show the proposed method is effective for accurately
identifying the location and extent of multiple structural damages.

2. Theoretical background

2.1 SDD formulation
SDD problem has been deeply investigated in the field of SHM. Based on model-

base methods, the damage is considered as reduction of stiffness and mass of
structures. Assuming the change in mass can be ignored comparing with the stiffness
(Begambre and Laier 2009). Then, the linear relationship between structural stiffness
matrix and element stiffness matrix can be adopted as follows:
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in which θ is a vector of damage factor with same length of Ne element numbers and
ranges from 0 to 1. θi = 0 means the undamaged condition. K and iK represent

structural global stiffness matrix and i-th element stiffness matrix respectively. The

dynamic behavior of structural finite element model (FEM) under excitation force ( )tF

can be written as:

( ) ( ) ( )+ = t+Mu C θ u K θ u F&& & (2)

where ( ), θM C are structural mass and damping matrix, respectively. , ,u u u&& & are

corresponding to acceleration, velocity and displacement vector respectively. The m-th
undamped frequency mω and mode shape mφ are extracted from the characteristic

equation derived from Eq. (2):

( )2 =m mω − M K θ φ 0 (3)

2.2 PSO-INM algorithm
The PSO-INM is a method for solving the model updating problem described above.

It is hybrid algorithm combining PSO and improved Nelder-Mead method (INM). The



basic idea of PSO-INM is to search the local area around optimum solution θ* found by
PSO using INM. The INM’s perfect local searching ability helps to increase the θ*’s
precision. Some more details of PSO-INM algorithm is referred in Chen and Yu (2015).

Traditional objective function is usually based on modal data, i.e., the relative
percentage errors (RPE) of frequencies and the modal assurance criterion (MAC) of the
mode shapes in the following form,
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m-th frequency c
mω and the actual frequency a

mω . When the calculated modal data

equal to the actual ones, the objective function gets its minimum value of zero. The
corresponding solution θ* is regarded as the structural condition.

For real structures, actual data are contaminated noise. The noise in the numerical
simulation is considered as a zero-mean stationary Gaussian white-noise added up to
original frequency domain data in different damage cases. The formulation of this
process can be described as follows:

noise εψ= +D D R (5)

where noiseD D， are the measured data for noise and noiseless, respectively. ε is the

noise level ranging from 0 to 1 and R is a vector with random values obeying the
distribution N(0, 1). ψ is the value of frequency for frequency data and is calculated by

Eq. (6) where mode shapes have Nn nodes.
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2.3 Bayesian theory
To remove the noise negative effect from the optimal process, the idea of Bayesian

theory is referred to form a more effective objective function and help to distinguish
spurious damaged elements out of the solution.

The probabilistic SHM framework based on Bayesian theory was firstly presented by
Beck (Beck et al. 1999) and applied for an simulating on-line monitoring. The significant
basic of Bayesian theory is the conditional probability, which assumed the prior
knowledge attributed to a certain events or hypothesis. The Bayesian interpretation
provide a rigorous process for uncertainty quantification. Bayesian theory used in the
field of SHM to express the updated probabilities of model parameter θ has the
mathematical form as:

( ) ( ) ( )p cp p=θ D D θ θ (7)



where ( )p θ D is the probability density function (PDF) of model parameters given the

modal data D and the assumed FEM, and ( )p D θ is the PDF of modal data given

the model parameter, which is more widely known as likelihood function. ( )p θ is the

prior PDF of model parameters θ based on engineering and modeling judgments. c is a

constant which ensures the integral of ( )p θ D to be one. Taking { }1 2= , ,,
sND D D D as

the observing modal data with Ns samples. And { }1, 2, , 1, 2, ,= , , , , , , ,
m ms s s N s s s N sω ω ωD φ φ φL

represents s-th sample of frequencies and mode shapes. Then the likelihood function
becomes:
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It is assumed that the testing and modal data are independent. The principle of
maximum entropy is used as a justification to choose a Gaussian distribution for the

,m sω and ,m sφ distribution. Then the resulting PDFs of ,m sω and ,m sφ are
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where, 2
mε and 2

mδ are the variance of the m-th frequency and the diagonal element

of covariance matrix Cm, respectively. The covariance matrix Cm of m-th mode shape is

simplified as 2

n nm m N NC Iδ ×= . The sample variances are used to approximate the

variances of Gaussian distribution 2
mε and 2

mδ which can be calculated as follows:
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The initial PDF on model parameters θ is assumed to have the form:
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The choice of 0θ is [0, 0, … , 0]T which represents the undamaged case. The

individual parameters are assumed to be independent, i.e., the covariance matrix of θ

is a diagonal one. Here, the choice for 2σ reflect the level of uncertainty in structures.

Substituting Eqs. (9), (10) and (12) into Eq. (8) yields the final form of ( )p θ D :
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The goal of Bayesian-based probabilistic analysis is to maximize the probability of

( )p θ D based on the known testing data and then ascertain the most likely damaged



elements.
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Based on the Bayesian analysis process, a multi-sample objective function is
proposed related to Eq. (13), which can be written as Eq. (14). The aim of the multi-
sample objective function is to make full use of the data sets but not only use the
average value. The advantages of multi-sample objective function will be explored in
the next section.

After defining the multi-sample objective function, the PSO-INM is conducted to
search the minimum value of Eq. (14). Generally, the PSO-INM will run several times to
avoid randomness, the average value is selected as the final solution. Error will
increase if some extremely high local solution is involved. So, a post posterior
probability of identified solutions is presented based on Bayesian analysis process. The
analytical process is similar to the above description except replacing the modal data
with the identified solutions calculating by the PSO-INM. It is rational to deem the
randomness of PSO-INM as another kind of uncertainty. Then the randomness of PSO-
INM and noise contaminated data can be considered together as system uncertainty.

Assuming { }1 2= , , ,
tND θ θ θ is the identified solutions found by the PSO-INM during Nt

run times, based on Eq. (13), the PDF of ( )p θ D given the data D is as follows,
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3. Numerical Simulations

3.1 Two-story rigid frame structure
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Fig. 1 Finite element model of two-story rigid frame structure



A two-story rigid frame structure is adopted to assess the performance of the
proposed method. The diagram of structure, physical dimensions and material
properties are as shown in Fig. 1. The elastic modules of both beam and column are

equal to 11 32.1 10 /N m× . The numbers in the box represent the finite element number,
while others denote the measured node number.

The frame structure is modeled by eighteen two-dimension beam elements with
equal length. Several damage scenarios are simulated by setting different value in the
damage coefficient vector θ. Single damage is introduced in the 17th element ranging
from 5% to 40%. Different combination of elements with different damage extents are
simulated to indentify the multi-damage cases. The damage element location and
extent are listed in Table 1.The symbol 5%@17 in Table 1 indicates that the stiffness of
the 17th element is decreased by 5%, similar meaning for other cases.

Table 1 Damage cases
Cases Description

1 05%@17
2 10%@17
3 20%@17
4 40%@17
5 20%@8, 20%@17
6 10%@8, 20%@17
7 15%@5, 20%@8, 30%@17
8 25%@5, 25%@8, 25%@11, 25%@17

The first five modal frequencies and mode shapes are adopted, which means Nm = 5.
The mode shape is measured along the vertical direction of components, which means
that the vertical direction of beam and the horizontal direction of column are available.
Noise is contaminated in the frequency and mode shape based on Eq. (5). Frequencies
are contaminated 3% noise while the mode shapes are contaminated 5%, respectively.

3.2 Comparison on different objective functions
Case 3 is used to investigate effects of noise on objective functions. Assuming the

damage location is determinate, the objective function becomes a single variable
function with respect to damage extent at 17th element. Noises are added up to the
original modal data in Case 3 to generate 100 samples. Dividing these data into 10
groups with equal sample size of 10. The objective functions, based on Eqs. (4) and
(14) respectively, are calculated using different group of data. The average values of
each group data are adopted for traditional objective functions. Fig. 2(a) is the result
due to traditional objective function while Fig. 2(b) is for the proposed one. The left plot
of each figure describes the trend of objective function value with respect to damage
extent at 17th element and the right one demonstrates the optimal damage extent
corresponding to the minimal objective function value for every group. By comparison,
the optimal damage extent of multi-sample objective function in Fig. 2(b), which varied
within a small area, is more stable than the traditional one in Fig. 2(a). Under the effect
of noise, the optimal solution of traditional objective function deviated from the actual



one and would lead to error identification even if the algorithm has a great optimal
ability. On the contrary, the optimal solution of multi-sample objective function is stable
for different group of data. This advantages of multi-sample objective function make it
more suitable for optimal algorithm and help to improve the accuracy of results.
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Fig. 2 Comparison on results due to objective functions

3.2 Sample size for objective functions
Because the multiple samples are available in the proposed objective function, the

sample size is an important parameter to be assessed. A small sample size cannot
guarantee the stability of objective functions while the large one would waste the
computing resource. The sample size is assessed by single damage cases for
convenience. The optimal damage extent in Cases 2 to 4 with respect to sample size
are shown in Fig. 3. It can be found from Fig. 3 that the optimal damage extents
become gradually stable with increasing sample size. When the sample size is higher
than 10, the optimal damage extents of all the single cases remain around the real one.
Therefore, the sample size is set to be 10 and extended for other multi-damage cases.
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Fig. 3 Optimal damage extent with respect to sample size

3.3 Damage identification results
As shown in Table 1, there are 4 single damage cases with damage at 17th element.



All the calculation results using the PSO-INM are shown in Fig. 4. And 50 runs are
conducted for each scenario. The sample size is 10 and the average values are
adopted for traditional objective function. The symbol “Bayesian case 1” and
“Traditional case 1” in Fig. 4(a) mean the results for Case 1 using multi-sample
objective function and traditional objective function respectively, similar meaning for
other cases.

(a) for Case 1 (b) for Case 2

(c) for Case 3 (d) for Case 4

Fig. 4 Damage identification for all single cases

Fig. 4 shows that the damage factor at 17th element is obviously greater than that at
other elements. It means that the damage location can be assessed well. Some error
identified elements also exist mostly around the 17th element, such as 16th and 18th

elements. The identified result for Case 2 is the worst one where elements around the
3rd element keep a quite high value of damage factor. The identified damage at 18th

element in Case 1, as shown in Fig. 4(a), is smaller than that in Bayesian case, which
means that the multi-sample objective function outperform than the traditional one in
the case of small damage, i.e. 5% stiffness reduced in element. After the damage
gradually increases, both objective functions show their advantage in assessing the
damage location and extent because effects of stiffness change in modal data
predominate the noise.

The identified results for multi-damage scenarios, i.e., Cases 5 to 8 as listed in Table
1, are shown in Fig. 5. For the multi-damage scenarios, the multi-sample objective
function shows its greater capability of assessing damage than the traditional one. The
conclusion can be confirmed strongly from Case 6, which includes two damages



occurring in 8th and 17th elements respectively. As shown in the left histogram of Fig.
6(b), the bars at 8th and 17th elements are higher than others with more stable values.
Therefore, the damage locations are assessed in the two elements and the
corresponding damage extent can be adopted by their average values. On the contrary,
there are at least four stable bars in the right histogram of Fig. 6(b), which means two
health elements are misjudged as damaged elements using traditional objective
function. However, the results for Case 8 in Fig. 5(d) further prove that the multi-sample
objective function is more accurate in quantifying the damage extent than that due to
the traditional objective function. Case 8 has four damaged elements with equal
stiffness reduction. The left histogram in Fig. 5(d) shows this state clearly, while the
right one shows that the damage factors at 5th and 11th elements are obviously lower
than that at 8th and 17th elements.

The illustrated results for both single and multiple damage scenarios indicate that the
multi-sample objective function not only locate the structural damage effectively but
also quantify the damage extent with an improved higher accuracy.

(a) for Case 5 (b) for Case 6

(c) for Case 7 (d) for Case 8

Fig. 5 Damage identification for multi-damage cases

3.4 Probabilistic analysis based on Bayesian theory
Usually, the average value of results calculated by the PSO-based algorithm are

used to represent the final solution. Fig. 6(a) shows the average solution due to multi-
sample objective function while Fig. 6(b) is due to traditional objective function. Base on
the average value, same conclusions can be drawn that the multi-sample objective
function outperform the traditional objective function in both locating multi-damage and



quantifying damage extent. However, some undamaged elements with a non-negligible
damage, such as 16th and 18th elements in Case 1, 3rd element in Case 2, and 5th

element in Case 6, lead to puzzlement in judging actual damage elements. It is better
to find a way to filter these spurious damage elements and improve the identification
accuracy further.

(a) Average value due to multi-sample objective function

d
a
m

a
g
e

fa
ct

o
r

d
a
m

a
g
e

fa
ct

o
r

d
a
m

a
g
e

fa
ct

o
r

d
a
m

a
g
e

fa
ct

o
r

d
a
m

a
g
e

fa
ct

o
r

d
a
m

a
g
e

fa
ct

o
r

d
a
m

a
g
e

fa
ct

o
r

d
a
m

a
g
e

fa
ct

o
r

(b) Average value due to tradition objective function

Fig. 6 Average value of damage identified results

Based on the Bayesian theory as described in section 2.3, Eq. (15) is adopted to
analyze the identified solutions found by the PSO-INM. First of all, a prior PDF of model
parameters θ based on engineering and modeling judgments should be determined.
Assuming the covariance matrix of initial model parameters is a diagonal matrix with

same value
22 =0.05σ θ∆ , where θ∆ represents the maximum absolute error of the

estimated parameters and 0.05 reflects the level of uncertainty. The damage extent
lower than 0.001 is deemed as health element in this paper. The possible damage
elements, with a damage extent higher than 0.001, are upgraded based on Eq. (15).
The PSO-INM is used again for this upgrading process. Fig. 7 shows the post
probabilistic analysis of the possible damage elements. The black bar represents the



mean value due to the multi-sample objective function while the white one means the
average value of further analysis based on probabilistic analysis. The Bayesian theory
based analysis leads to a decreasing damage extent among possible damage
elements, but the decrease in spurious damage elements are greater than the actual
damage elements which make the actual damage elements more outstanding.

Fig. 7 Comparison on average value of damage results

4. CONCLUSIONS

Based on the Bayesian theory, a multi-sample objective function is proposed for SDD
issues. Comparative studies between the proposed objective function and the
traditional one are conducted in this paper. To distinguish the spurious damage
elements from the actual ones, the Bayesian probabilistic analysis is introduced after
the process of PSO-INM. Numerical simulations on a two-story rigid frame shows that
the method proposed in this paper can not only locate the structural damages
effectively but also quantify the damage extent with an improved higher accuracy.
Some conclusions can be summarized as follows:
1. The multi-sample objective function based on Bayesian theory avoid excessively

bias of minimum point of objective function. It helps to improve the accuracy of PSO-
based algorithm because the optimum of multi-sample objective function is closer to
the actual damage cases. The disadvantage of noise is greatly reduced.

2. The multi-sample objective function outperform in identified small damages and
multiple damages. The ability is more suitable for actual structures, where damages
should be detected before extending and more than one damage exist
simultaneously.

3. By introducing Bayesian-based probabilistic analysis after the PSO-based algorithm,
the spurious damage elements can be rejected and the actual damage becomes
more outstanding.
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