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Abstract 

 

The classical Kalman filter (KF) is an effective approach of state estimation for linear 

discrete-time systems, but classical KF is applicable only when external inputs are 

measured. So far, some studies of Kalman filter with unknown inputs (KF-UI) have been 

proposed. However, previous KF-UI approaches based solely on acceleration 

measurements are inherently unstable which leads to poor tracking and fictitious drifts in 

the identified structural displacements and unknown inputs in the presence of 

measurement noises. Moreover, it is necessary to have the measurements of 

acceleration responses at the locations where unknown inputs applied, direct 

feedthrough of the unknown inputs to the output measurements are required in these 

approaches. In this paper, it aims to extend the classical KF approach to circumvent the 

above limitations for Input and state estimation for linear discrete-time systems without 

direct feedthrough. Based on the scheme of the classical KF, a Kalman filter with 

unknown excitations (KF-UI) is derived for linear discrete-time systems without direct 

feedthrough. Then, data fusion of acceleration and displacement or strain 

measurements is used to prevent the drifts in the identified structural state and unknown 

inputs. 

In addition, dynamic displacement is one of the crucial physical parameters for 
bridge rating, seismic risk assessment, structural health monitoring of structures. 
However, it is challenging to measure dynamic displacement because displacement is a 
relative quantity and requires a fixed reference point Some researchers have 
investigated dynamic displacement estimation by fusing biased high-sampling rate 
acceleration and low-sampling rate non-contact displacement measurements. In this 
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paper, the proposed KF-UI is used to identify the dynamic displacement by fusing 
biased high-sampling rate acceleration and low-sampling rate displacement 
measurements with consideration of bias in acceleration measurements as “unknown 
input”. Numerical examples are used to demonstrate the effectiveness of the proposed 
approach. 

 
1. Introduction 
 

The identification of structural dynamic systems using the measurements of 
structural vibration data is essential for structural health monitoring and vibration control 
(Li and Chen 2013; Yuen and Mu 2015). As it is impractical to measure all structural 
responses, structural identification using only partial measurements of structural 
responses have received great attentions (Xu et al. 2015; Lei et al. 2014, 2015). In this 
regard, the Kalman filter (KF), which was proposed by R.E. Kalman in the early sixties 
(Kalman 1960), provides a particularly practical and efficient state estimation algorithm 
with partial measurements of structural responses. However, in the classical KF 
approach, it is requested that all external inputs are known. 

To circumvent the limitation of the classical KF approach, many improved 
approaches have been proposed for Kalman filter based identification of joint structural 
state and external inputs, e.g., an iterative identification procedure consisting of the 
least-squares identification technique and a modification process between each iterative 
step (Chen and Li 2004); the unbiased minimum-variance input and state estimation 
with direct feed through (Gillijns and Moor 2007a); a Kalman filter with unknown inputs 
approach derived by the weighted least-squares estimation method (Pan et al. 2010); a 
two-stage Kalman estimator in which the classical Kalman filter is first adopted to 
establish a regression model between the residual innovation and then a recursive 
least-squares estimator is proposed to identify the input excitation forces (Liu et al. 
2000; Ma et al. 2003; Wu et al. 2009); an augmented Kalman filter (AFK) for force 
identification in structural dynamics, in which the unknown forces are included in the 
state vector and estimated in conjunction with the states (Lourens et al..2012); an 
average acceleration discrete algorithm with regularization (Ding et al. 2013) and implicit 
Newmark-  algorithm with regularization (Liu et al. 2014); a weighted adaptive iterative 
least-squares estimation with incomplete measured excitations (Xu et al. 2015); Kalman 
estimator with unknown inputs (Lei et al. 2012, 2014) and a two-stage and two-step 
algorithm (Lei et al. 2015). However, it has been demonstrated that previous Kalman 
filter with unknown input (KF-UI) using limited number of acceleration measurements 
are inherently unstable which leads poor tracking and so-called drifts in the estimated 
unknown external inputs and structural displacements (Azam et al. 2015; Naets et al. 
2015). Although regularization approaches (Ding et al. 2013; Liu et al. 2015) or 
post-signal processing schemes (Lei et al. 2012, 2014, 2015) can be used to treat the 
drift in the identified results, these treatments prohibits the on-line and real-time 
identification of coupled structural state and unknown inputs.  

Recently, the authors have proposed an improved Kalman filter with unknown 
inputs based on data fusion of partial acceleration and displacement measurements for 



 

real time estimation of joint structural states and the unknown inputs (Liu et al. 2016). 
However, like other previous Kalman filter with unknown input (KF-UI), it is necessary to 
have the measurements of acceleration responses at the locations where unknown 
inputs applied, i.e., direct feedthrough of the unknown inputs to the output 
measurements are requested. Although Gillijns and Moor investigated unbiased 
minimum-variance input and state estimation for linear discrete-time systems without 
direct feedthrough (Gillijns and Moor 2007b), their derivations are quite complex. 

In this paper, it aims to extend the classical KF approach and overcome the 
drawbacks of existing KF-UI approaches for real time estimation of structural states and 
unknown inputs without direct feedthrough of the unknown inputs to the output 
measurements. Since accelerations and displacements contains high and low 
frequencies vibration characteristics, respectively (Smith et al. 2007; Ay and Wang 
2014; Kim and Sohn 2014), data fusion of acceleration and displacement or strain 
measurements is used to prevent the low-frequency drifts in the identified structural 
state vector and unknown external inputs. Numerical examples of the identification of 
joint structural state and unknown inputs of and a plane truss are used to demonstrate 
the effectiveness and versatilities of the proposed algorithm. 

 What’s more, the proposed method is used for real-time dynamic displacement 

estimation by fusing biased high-sampling rate acceleration and low-sampling rate 

displacement measurements with the consideration of bias in acceleration 

measurements as “unknown inputs”. A numerical example is used to demonstrate the 

effectiveness of the proposed approach. 

 
2. The proposed approach 
 

The equation of motion of a linear discrete-time systems unknown external inputs 
can be described by 
 

1 +u

k k k k k k  X X f w                          (1) 

 

where 1kX  is the state vector at time t k t   with t  being the sampling time step. Ak 

is the state transformation matrix, Bk is the influence matrix of unknown input vector
u

kf , 
and wk is the model uncertainty which is assumed a noise with zero mean and a 
covariance matrix Qk. 

It is assumed that there is no direct feedthrough of the unknown inputs to the output 
measurements. Therefore, the discrete observation equation is described by: 

 1 1 1 1k k k k    Y C X v                            (2) 

where Yk+1 is the measured response vector at time t=(k+1)t, Ck+1 is an known 

measurement matrices associated with structural state vector, respectively, and +1k
v is the 

measurement noise vector, which is assumed a Gaussian white noise vector with zero 
mean and a covariance matrix Rk+1.  



 

Analogous to the classical KF scheme, the proposed KF-UI also contains two 

procedures. First, 1|k kX  is predicted as, 

1| | |
ˆˆ u

k k k k k k k k  X X f                           (3) 

where 1|k kX ,
|

ˆ
k kX and 

|
ˆ u

k kf  denote the predicted 1k+X , estimated kX  and the estimated 

u
f at time at time t k t  , respectively.  

Then, the estimated +1kX in the measurement update (correction) procedure is 

derived as 

1| 1 1| 1 1 1 1|
ˆ ( )k k k k k k k k k        X X K Y C X                     (4) 

where 
1| 1

ˆ
k k X  is the estimated, +1kX  given the observations (Y1, Y2,…, Yk+1), Kk+1 is the 

Kalman gain matrix which can be derived as 
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in which 
1|k k

P  is the error covariance of the predicted 1|k kX . 

Under the condition that the number of measurements (sensors) is no less than that 

of the unknown inputs, ˆ u

k|kf  can be estimated by minimizing the error vector 1k+  

defined by 

1 1 1 1| 1
ˆ

k+ k+ k k k=   y C X                          (6) 

By inserting the expression of 1| 1
ˆ

k k X  and 1|k kX in Eq.(4) and Eq.(5) , respectively 

into the above error vector, 1k+  can be expressed by 
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Then, ˆ u

k|kf can be estimated from Eq.(8) based on least-squares estimation as 
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where  
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Due to +1 1k k k M C B I ,  
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The error of state estimation defined as 
1| 1 1 1| 1

ˆˆ =k k k k k    X
e X X can be derived from 

Eqs.(2-4) as 
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where +1|k k

X
e  is defined as +1| 1 1|=k k k k k X

e X X . Then, 
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where |
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f
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into Eq.(8), |
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k k

f
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From Eq.(12), the error covariance matrix 
1| 1

ˆ
k k 

X
P is estimated as 

   
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To minimize the error covariance matrix
1| 1

ˆ
k k 

X
P , 1kK  should be selected as 
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Then, 
1| 1

ˆ
k k 

X
P in Eq.(14) can be simplified as: 
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The error covariance matrix +1|k k

x
P  is expressed as: 
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The error covariance matrix 
|

ˆ
k k

f
P can be estimated from Eq.(13) as 
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Xf
P and |
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fX
P are the two error covariance matrices defined as 
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and the error covariance matrix |
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Xf
P can be derived as 
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3. Numerical validations of the proposed KF-UI 

3.1 Identification of a truss-structure and unknown input 
 
To validate the proposed KF-UI for the identification of other type structures with 

unknown inputs, the identification of a plane truss and unknown input is studied. As 
shown in Fig.1, the truss consists of 11 uniform members. The length of each horizontal 

and inclined bar are 2m, 2 m, respectively. Other parameters of the truss are: cross 

section area A=
-57.854 10 m2, Young’s module E=

112 10 pa, mass density of truss 

member 
3 37.8 10 /kg m   and the mass is concentrated on each node. The truss is 

subjected to an unknown input in the vertical direction at node 4. In this example, 

Rayleigh damping C=M+K is employed with =0.6993 and =0.0011. 

 

Fig. 1: A plane truss under unknown input 

As indicted in Fig.1, acceleration responses in the vertical directions of nodes 1, 3 
and 5 are measured. In practice, displacement measurements may be absent but strain 
measurements are easily available. Displacement measurements can be replaced by 
strain measurements in the KF-UI based on data fusion. Therefore, partially measured 
strains are added in combination with the partial acceleration measurements to prevent 
the above drifts in the identification problem. For this relatively small size structural 
model, the strain at the second bar in Fig. 4 is measured. Data fusion of this measured 
strain and the above three accelerations are used in the observation equation. As 
shown by the comparisons of identified structural state and input with their exact values 
in Fig. 6.  

 

(a) Identified displacement             (b) Identified velocity 



 

 

(c) Comparison of identified unknown input 

Fig.2 Comparisons of identified results with data fusion 
 

Also, it is noted that identified structural state and unknown input by the proposal 
algorithm are in good agreements with their corresponding actual values. 

 
 
3.2 Dynamic displacement by fusing biased high-sampling rate acceleration and 

low-sampling rate displacement measurements 

3.2.1 The proposed method 

Some researchers have investigated dynamic displacement estimation by fusing 
biased high-sampling rate acceleration and low-sampling rate displacement 
measurements. But, due to the influence of the environment or the sensor itself, the 
actual measurement of structural responses, there are always measurement bias. In 
this paper, the acceleration bias can be regarded as an unknown input information, and 
then use the proposed Kalman Filter (KF-UI) to identify unknown bias and dynamic 
displacement. 
The equation of motion and observation can be written as: 

0 1 0 0

0 0 1 1
m a

x x
x

x x

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           
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                          (22) 

 1 0
m d

x
z x

x


 
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 
                              (23) 

where mx and mx are the measured displacement and acceleration, the d  and a are 

the noise of displacement and acceleration. 
The state equation of the system can be expressed as: 
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Based on the zero-order holder (ZOH) discretization of the above equation and the 
consideration of uncertainty in modeling, the state equation of the system in the discrete 
form can be expressed as: 

1k d k d k k
x w


  x A x B                               (26) 

k k k
v z Hx                                      (27) 

If the sampling step of measured responses is Ta ，then 
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The acceleration measurement
mk

x  can be expressed as the sum of true 

acceleration 
k

x and bias ，namely 

mk k k
x x b                                       (29) 

Combine Eq.(27) and (30), it can be obtained that 

1k d k d mk d k k
x b w


   x A x B B                        (30) 

Let displacement measurement 
mk

x  be sampled at Td and satisfied Td/Ta=m. Here, m 

is a sampling rate ratio of displacement measurement to acceleration measurement, 
and this rate is assumed to be an integer greater than 1 in the proposed multi-rate data 
fusion scheme. When displacement measurements become available 

k=jm（j=1,2,3…）at the posterior correction step k=jm（j=1,2, …）, the observation 

equation is obtained as follows: 

, [1 0]
k k

x z H                               (31) 

Using the proposed method, the equation(24)can be rewritten as: 

1

u

k d k d k d k k
f f w


   x A x B B                   (32) 

Namely, the known measured acceleration can be equivalent to known force, and 
the unknown measured acceleration can be equivalent to “unknown input”. 

 
3.2 .2 Numerical Simulation 

 
A six-story shear building is used as an example. Parameters of the building are 

assumed as: floor mass mi=100kg, floor stiffness ki=2000 N/m, floor damping ci=30Ns/m 

(i=1,2,..,20), respectively. An input of wide-banded white noise is applied to the third 
floor of the building. Suppose the bias of measured acceleration is -50mm/s

 
,the time 

interval Ta=0.001s, Td=0.01s. As shown by the comparisons of identified dynamic 
displacement and bias in acceleration measurements with their exact values in Fig. 3. 



 

 

(a) Identified displacement           (b) Identified displacement 

 

(c) Comparison of identified bias 

Fig. 3. Comparisons of identified results  

 

Also, it is noted that identified dynamic displacement and unknown bias by the 
proposal algorithm are in good agreements with their corresponding actual values. 

 
4. Conclusions 
 

Conventional Kalman filter (KF) are applicable only when external inputs are 
measured. Some improved Kalman filter with unknown inputs (KF-UI) based solely on 
acceleration measurements are inherently unstable which leads the drifts in the 
estimated unknown inputs and structural displacements. Moreover, it is necessary to 
have the measurements of acceleration responses at the locations where unknown 
inputs applied for the recursive estimation of unknown inputs. In this paper, an algorithm 
is proposed to circumvent these limitations for the estimation of structural states and 
unknown inputs of linear discrete-time systems without the direct feedthrough of the 
unknown inputs to the output measurements. Based on the scheme of the classical KF, 
a Kalman filter with unknown excitations (KF-UI) and without direct feedthrough is 
derived. Then, data fusion of acceleration and displacement or strain measurements is 
used to prevent the drifts in the identified structural state vector and unknown external 
inputs in real time. The proposed algorithm is not available previous literature and the 
advantages of the proposed algorithm are obvious since it provides an efficient 
algorithm of estimation of joint structural states and the unknown inputs.  

Moreover, the proposed algorithm can be used for real-time dynamic displacement 
estimation by fusing biased high-sampling rate acceleration and low-sampling rate 



 

displacement measurements with the consideration of bias in acceleration 
measurements as “unknown inputs”. Numerical examples are used to demonstrate the 
effectiveness of the proposed approach. 
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